×

A second-order test to detect spatio-temporal anisotropic effects in point patterns. (English) Zbl 1440.62342

Summary: Second-order spatio-temporal orientation methods provide a natural tool for the analysis of anisotropic spatio-temporal point process data. In this paper, we generalize a method based on the spatial point pair orientation distribution function to test for evidence of spatio-temporal anisotropy, by exploring the fact that the space-time orientation function is the distribution function of a uniform random variable on \([0,\pi)\) for any second-order intensity reweighted stationary and isotropic spatio-temporal point process. We present a numerical procedure based on this result to test for anisotropic effects, illustrated through a simulation study considering several space-time structures including Poisson and cluster configurations. The resulting testing procedure is applied to analyse the spatio-temporal distribution of earthquakes in Southern California for the period 1984–2004. Our results confirm that our approach is able to detect directional components at distinct spatio-temporal scales.

MSC:

62M30 Inference from spatial processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62P12 Applications of statistics to environmental and related topics

Software:

k.c
Full Text: DOI

References:

[1] Daley, DJ; Vere-Jones, D., An introduction to the theory of point processes. Volume II: General theory and structure, (2008), Springer, New York · Zbl 1159.60003
[2] Cox, DR; Isham, V., Point processes, (1980), Chapman & Hall, London · Zbl 0441.60053
[3] Møller, J; Waagepetersen, RP., Statistical inference and simulation for spatial point processes, (2004), Chapman & Hall, New York · Zbl 1044.62101
[4] Cressie, NAC., Statistics for spatial data, (1993), Wiley, New York
[5] Diggle, PJ., Statistical analysis of spatial and spatio-temporal point patterns, (2013), Chapman & Hall/CRC, Boca Raton, FL
[6] Gabriel, E., Estimating second-order characteristics of inhomogeneous spatio-temporal point process: influence of edge correction methods and intensity estimates, Methodol Comput Appl Probab, 16, 1, 1-21, (2014) · Zbl 1284.62297 · doi:10.1007/s11009-012-9295-6
[7] Gabriel, E; Diggle, PJ., Second-order analysis of inhomogeneous spatio-temporal point process data, Stat Neerl, 63, 43-51, (2009) · Zbl 07882057 · doi:10.1111/j.1467-9574.2008.00407.x
[8] Møller, J; Ghorbani, M., Aspects of second-order analysis of structured inhomogeneous spatio-temporal point processes, Stat Neerl, 66, 472-491, (2012) · doi:10.1111/j.1467-9574.2012.00526.x
[9] Cressie, NAC; Wikle, CK., Statistics for spatio-temporal data, (2011), Wiley, New York · Zbl 1273.62017
[10] Diggle, PJ., Spatio-temporal point processes, partial likelihood, foot and mouth disease, Stat Methods Med Res, 15, 325-336, (2006) · Zbl 1143.62339 · doi:10.1191/0962280206sm454oa
[11] Baddeley, A; Gregori, P; Mateu, J, Case studies in spatial point process modeling, 185, (2006), Springer, New York · Zbl 1084.62501
[12] Gelfand, AE; Diggle, PJ; Fuentes, M, Handbook of spatial statistics, (2010), Chapman & Hall/CRC, Boca Raton, FL · Zbl 1188.62284
[13] Stoyan, D; Kendall, WS; Mecke, J., Stochastic geometry and its applications, (1995), Wiley, New York · Zbl 0838.60002
[14] Illian, J; Penttinen, A; Stoyan, H, Statistical analysis and modelling of spatial point patterns, (2008), Wiley, New York · Zbl 1197.62135
[15] Redenbach, C; Särkkä, A; Freitag, J, Anisotropy analysis of pressed point processes, Adv Stat Anal, 93, 237-261, (2009) · Zbl 1331.62446 · doi:10.1007/s10182-009-0106-5
[16] Stoyan, D; Beneš, V., Anisotropy analysis for particle systems, J Microsc, 164, 159-168, (1991) · doi:10.1111/j.1365-2818.1991.tb03201.x
[17] Mateu, J., Second-order characteristics of spatial marked processes with applications, Nonlinear Anal, 1, 145-162, (2000) · Zbl 1004.92035 · doi:10.1016/S0362-546X(99)00398-3
[18] Ohser, J; Stoyan, D., On the second-order and orientation analysis of planar stationary point processes, Biom J, 23, 523-533, (1981) · Zbl 0494.60048 · doi:10.1002/bimj.4710230602
[19] Møller, J; Toftaker, H., Geometric anisotropic spatial point pattern analysis and Cox processes, Scand J Statist, 41, 414-435, (2014) · Zbl 1416.62547 · doi:10.1111/sjos.12041
[20] Mugglestone, M; Renshaw, E., The explanatory analysis of bivariate spatial point patterns using cross-spectra, Environmetrics, 7, 4, 361-377, (1996) · doi:10.1002/(SICI)1099-095X(199607)7:4<361::AID-ENV217>3.0.CO;2-U
[21] Wong, KY; Chiu, SN., Isotropy test for spatial point processes using stochastic reconstruction, Spat Stat, 15, 56-69, (2016) · doi:10.1016/j.spasta.2015.12.002
[22] Rajala, T; Sarkka, A; Redenbach, C, Estimating geometric anisotropy in spatial point patterns, Spat Stat, 15, 139-155, (2016)
[23] Rafati, AH; Safavimanesh, F; Dorph-Petersen, KA, Detection and spatial characterization of minicolumnarity in the human cerebral cortex, J Microsc, 261, 1, 115-126, (2016) · doi:10.1111/jmi.12321
[24] Møller, J; Safavimanesh, F; Rasmussen, JG., The cylindrical k-function and Poisson line cluster point processes, Biometrika, 103, 4, 937-954, (2016) · Zbl 1506.62380 · doi:10.1093/biomet/asw044
[25] Møller, J; Rasmussen, JG., A sequential point process model and Bayesian inference for spatial point patterns with linear structures, Scand J Statist, 39, 618-634, (2012) · Zbl 1253.62069 · doi:10.1111/j.1467-9469.2011.00769.x
[26] Rosenberg, MS., Wavelet analysis for detecting anisotropy in point patterns, J Veg Sci, 15, 277-284, (2004) · doi:10.1111/j.1654-1103.2004.tb02262.x
[27] Guan, Y; Sherman, M; Calvin, JA., A nonparametric test for spatial isotropy using subsampling, J Am Stat Assoc, 99, 810-821, (2004) · Zbl 1117.62348 · doi:10.1198/016214504000001150
[28] Guan, Y; Sherman, M; Calvin, JA., Assessing isotropy for spatial point processes, Biometrics, 62, 119-125, (2006) · Zbl 1091.62096 · doi:10.1111/j.1541-0420.2005.00436.x
[29] Mugglestone, M; Renshaw, E., Detection of geological lineations on aerial photographs using two-dimensional spectral analysis, Comput Geosci, 24, 771-784, (1998) · doi:10.1016/S0098-3004(98)00065-X
[30] Grenfell, BT; Bjørnstad, ON; Kappey, J., Travelling waves and spatial hierarchies in measles epidemics, Nature, 414, 716-723, (2001) · doi:10.1038/414716a
[31] Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data. In: Daubechies I, editor. Different perspectives on wavelets. San Antonio (TX): American Mathematical Society; 1993. p. 173-205 · Zbl 0786.62094
[32] Gao, W; Li, BL., Wavelet analysis of coherent structures at the atmosphere-forest interface, J Appl Meteorol, 32, 1717-1725, (1993) · doi:10.1175/1520-0450(1993)032<1717:WAOCSA>2.0.CO;2
[33] Perry, JN; Liebhold, AM; Rosenberg, MS, Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data, Ecography, 25, 578-600, (2002) · doi:10.1034/j.1600-0587.2002.250507.x
[34] Harper, KA; Macdonald, SE., Structure and composition of Riparian boreal forest: new methods for analyzing edge influence, Ecology, 82, 649-659, (2001) · doi:10.1890/0012-9658(2001)082[0649:SACORB]2.0.CO;2
[35] Comas, C; Rodríguez-Cortés, FJ; Mateu, J., Second-order analysis of anisotropic spatio-temporal point process data, Stat Neerl, 69, 49-66, (2015) · Zbl 1541.62248 · doi:10.1111/stan.12046
[36] Cronie, O; van Liesthout, NM., A j-function for inhomogeneous spatio-temporal point processes, Scand J Statist, 42, 562-579, (2015) · Zbl 1364.60063 · doi:10.1111/sjos.12123
[37] Ripley, BD., The second-order analysis of stationary point processes, J Appl Probab, 13, 255-266, (1976) · Zbl 0364.60087 · doi:10.2307/3212829
[38] Ripley, BD., Stochastic simulation, (1987), Wiley, New York · Zbl 0613.65006
[39] Diggle, PJ; Chetwynd, A; Häggkvist, R, Second-order analysis of spatio-temporal clustering, Stat Methods Med Res, 4, 124-136, (1975) · doi:10.1177/096228029500400203
[40] Stoyan, D; Stoyan, H., Fractals, random shapes and point fields: methods of geometrical statistics, (1994), Wiley, New York · Zbl 0828.62085
[41] Massey, FJ., The Kolmogorov–Smirnov test for goodness of fit, J Am Stat Assoc, 46, 68-78, (1951) · Zbl 0042.14403 · doi:10.1080/01621459.1951.10500769
[42] Marsaglia, G; Tsang, WW; Wang, J., Evaluating Kolmogorov’s distribution, J Stat Softw, 8, 18, 1-4, (2003) · doi:10.18637/jss.v008.i18
[43] Assessing spatial point process models using weighted k-functions: analysis of California earthquakes. In: Baddeley A, Gregori P, Mateu J, et al., editors. Case studies in spatial point process modeling. New York: Springer; 2006. p. 293-306 (Lecture Notes in Statistics) · Zbl 05243467
[44] Baddeley, AJ; Møller, J; Waagepetersen, R., Non- and semi-parametric estimation of interaction in inhomogeneous point patterns, Stat Neerl, 54, 329-350, (2000) · Zbl 1018.62027 · doi:10.1111/1467-9574.00144
[45] Ghorbani, M., Testing the weak stationarity of a spatio-temporal point process, Stoch Environ Res Risk Assess, 27, 517-524, (2013) · doi:10.1007/s00477-012-0597-6
[46] Berman, M; Diggle, P., Estimating weighted integrals of the second-order intensity of a spatial point process, J R Stat Soc B, 51, 81-92, (1989) · Zbl 0671.62043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.