×

The \(p\)-adic Schrödinger equation and the two-slit experiment in quantum mechanics. (English) Zbl 07909937

Summary: \(p\)-Adic quantum mechanics is constructed from the Dirac-von Neumann axioms identifying quantum states with square-integrable functions on the \(N\)-dimensional \(p\)-adic space, \(\mathbb{Q}_p^N\). This choice is equivalent to the hypothesis of the discreteness of the space. The time is assumed to be a real variable. The \(p\)-adic quantum mechanics is motivated by the question: what happens with the standard quantum mechanics if the space has a discrete nature? The time evolution of a quantum state is controlled by a nonlocal Schrödinger equation obtained from a \(p\)-adic heat equation by a temporal Wick rotation. This \(p\)-adic heat equation describes a particle performing a random motion in \(\mathbb{Q}_p^N\). The Hamiltonian is a nonlocal operator; thus, the Schrödinger equation describes the evolution of a quantum state under nonlocal interactions. In this framework, the Schrödinger equation admits complex-valued plane wave solutions, which we interpret as \(p\)-adic de Broglie waves. These mathematical waves have all wavelength \(p^{-1}\). In the \(p\)-adic framework, the double-slit experiment cannot be explained using the interference of the de Broglie waves. The wavefunctions can be represented as convergent series in the de Broglie waves, but the \(p\)-adic de Broglie waves are just mathematical objects. Only the square of the modulus of a wave function has a physical meaning as a time-dependent probability density. These probability densities exhibit interference patterns similar to the ones produced by ‘quantum waves’. In the \(p\)-adic framework, in the double-slit experiment, each particle goes through one slit only. The \(p\)-adic quantum mechanics is an analog (or model) of the standard one under the hypothesis of the existence of a Planck length. The precise connection between these two theories is an open problem. Finally, we propose the conjecture that the classical de Broglie wave-particle duality is a manifestation of the discreteness of space-time.

MSC:

81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
81Q65 Alternative quantum mechanics (including hidden variables, etc.)
26E30 Non-Archimedean analysis

References:

[1] Dirac, P. A.M., The Principles of Quantum Mechanics, 1958, Oxford University Press · Zbl 0080.22005
[2] von Neumann, John, Mathematical Foundations of Quantum Mechanics, 2018, Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1391.81004
[3] Berezin, F. A.; Shubin, M. A., (The Schrödinger Equation. The Schrödinger Equation, Math. Appl. (Soviet Ser.), vol. 66, 1991, Kluwer Academic Publishers Group: Kluwer Academic Publishers Group Dordrecht) · Zbl 0749.35001
[4] Takhtajan Leon, A., (Quantum Mechanics for Mathematicians. Quantum Mechanics for Mathematicians, Graduate Studies in Mathematics, vol. 95, 2008, American Mathematical Society) · Zbl 1156.81004
[5] Komech, A., Quantum Mechanics: Genesis and Achievements, 2013, Springer: Springer Dordrecht · Zbl 1264.81005
[6] Vladimirov, V. S.; Volovich, I. V.; Zelenov, E. I., \(p\)-Adic Analysis and Mathematical Physics, 1994, World Scientific · Zbl 0864.46048
[7] Kochubei, A. N., Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields, 2001, Marcel Dekker: Marcel Dekker New York · Zbl 0984.11063
[8] Zúñiga-Galindo, W. A., (Pseudodifferential Equations over Non-Archimedean Spaces. Pseudodifferential Equations over Non-Archimedean Spaces, Lecture Notes in Mathematics, vol. 2174, 2016, Springer: Springer Cham) · Zbl 1367.35006
[9] Bendikov, A.; Grigor’yan, A.; Pittet, C.; Woess, W., Isotropic Markov semigroups on ultra-metric spaces, Russian Math. Surveys, 69, 589-680, 2014 · Zbl 1322.60151
[10] Aharonov, Y.; Cohen, E.; Colombo, F.; Landsberger, T.; Sabadini, I.; Struppa, D.; Tollaksen, J., Finally making sense of the double-slit experiment, Proc. Natl. Acad. Sci. USA, 114, 6480, 2017
[11] Bronstein, M., Republication of: Quantum theory of weak gravitational fields, Gen. Relativity Gravitation, 44, 267-283, 2012 · Zbl 1242.83037
[12] Volovich, I. V., Number theory as the ultimate physical theory. \(p\)-adic numbers ultrametric, Anal. Appl., 2, 1, 77-87, 2010 · Zbl 1258.81074
[13] Rovelli, C.; Vidotto, F., Covariant Loop Quantum Gravity: An Elementary Introduction To Quantum Gravity and Spinfoam Theory, 2015, Cambridge University Press · Zbl 1432.81065
[14] Beltrametti, E. G.; Cassinelli, G., Quantum mechanics and p-adic numbers, Found. Phys., 2, 1-7, 1972
[15] Vladimirov, V. S.; Volovich, I. V., p-adic quantum mechanics, Soviet Phys. Dokl., 33, 9, 669-670, 1988 · Zbl 0694.22004
[16] Vladimirov, V. S.; Volovich, I. V., A vacuum state in p-adic quantum mechanics, Phys. Lett. B, 217, 4, 411-415, 1989
[17] Vladimirov, V. S.; Volovich, I. V., \(p\)-adic quantum mechanics, Comm. Math. Phys., 123, 4, 659-676, 1989 · Zbl 0688.22004
[18] Meurice, Yannick, Quantum mechanics with p-adic numbers, Internat. J. Modern Phys. A, 4, 19, 5133-5147, 1989 · Zbl 0715.22028
[19] Zelenov, E. I., p-adic quantum mechanics for \(p = 2\), Theoret. and Math. Phys., 80, 2, 848-856, 1989 · Zbl 0698.43006
[20] Ruelle, Ph.; Thiran, E.; Verstegen, D.; Weyers, J., Quantum mechanics on \(p\)-adic fields, J. Math. Phys., 30, 12, 2854-2874, 1989 · Zbl 0709.22011
[21] Vladimirov, V. S.; Volovich, I. V.; Zelenov, E. I., Spectral theory in \(p\)-adic quantum mechanics and representation theory, Soviet Math. Dokl., 41, 1, 40-44, 1990 · Zbl 0721.46047
[22] Ismagilov, R. S., On the spectrum of a selfadjoint operator in L2(K), where K is a local field; an analogue of the Feynman-Kac formula, Theoret. and Math. Phys., 89, 1, 1024-1028, 1991 · Zbl 0780.47038
[23] Meurice, Yannick, A discretization of p-adic quantum mechanics, Comm. Math. Phys., 135, 2, 303-312, 1991 · Zbl 0718.22011
[24] Khrennikov, A. Yu, \(p\)-adic quantum mechanics with \(p\)-adic valued functions, J. Math. Phys., 32, 4, 932-937, 1991 · Zbl 0746.46067
[25] Zelenov, E. I., \(p\)-adic quantum mechanics and coherent states, Theoret. and Math. Phys., 86, 2, 143-151, 1991 · Zbl 0737.22014
[26] Zelenov, E. I., \(p\)-adic quantum mechanics and coherent states. II. Oscillator eigenfunctions, Theoret. and Math. Phys., 86, 3, 258-265, 1991 · Zbl 0737.22015
[27] Kochubei, Anatoly N., A Schrödinger-type equation over the field of \(p\)-adic numbers, J. Math. Phys., 34, 8, 3420-3428, 1993 · Zbl 0780.35088
[28] Cianci, Roberto; Khrennikov, Andrei, \(p\)-adic numbers and renormalization of eigenfunctions in quantum mechanics, Phys. Lett. B, 328, 1-2, 109-112, 1994 · Zbl 0910.46060
[29] Alan, D. Blair, Adèlic path space integrals, Rev. Math. Phys., 7, 1, 21-49, 1995 · Zbl 0834.60107
[30] Anatoly, N. Kochubei, \(p\)-Adic commutation relations, J. Phys. A, 29, 19, 6375-6378, 1996 · Zbl 0905.46051
[31] Varadarajan, V. S., Path integrals for a class of p-adic Schrödinger equations, Lett. Math. Phys., 39, 2, 97-106, 1997 · Zbl 0868.47047
[32] Khrennikov, A., (Non-Kolmogorov Probabilistic Models with \(p\)-adic Probabilities and Foundations of Quantum Mechanics, Progr. Probab., vol. 42, 1998, Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA), 275-303 · Zbl 0902.60004
[33] Albeverio, S.; Cianci, R.; De Grande-De Kimpe, N.; Khrennikov, A., \(p\)-adic probability and an interpretation of negative probabilities in quantum mechanics, Russ. J. Math. Phys., 6, 1, 1-19, 1999 · Zbl 1059.81503
[34] Dimitrijević, D.; Djordjević, G. S.; Dragovich, B., On Schrödinger-type equation on p-adic spaces, Bulgar. J. Phys., 27, 3, 50-53, 2000 · Zbl 1121.81310
[35] Dragovich, B., \(p\)-adic and adelic quantum mechanics, Proc. Steklov Inst. Math., 2, 64-77, 2004 · Zbl 1098.81010
[36] Vourdas, A., Quantum mechanics on \(p\)-adic numbers, J. Phys. A, 41, 45, Article 455303 pp., 2008, 20pp · Zbl 1152.81023
[37] Dragovich, B.; Yu, Khrennikov A.; Kozyrev, S. V.; Volovich, I. V., On \(p\)-adic mathematical physics. \(p\)-adic numbers ultrametric, Anal. Appl., 1, 1, 1-17, 2009 · Zbl 1187.81004
[38] Zelenov, E. I., \(p\)-adic model of quantum mechanics and quantum channels, Proc. Steklov Inst. Math., 285, 1, 132-144, 2014 · Zbl 1304.81056
[39] Anashin, V., Free choice in quantum theory: A \(p\)-adic view, Entropy, 25, 5, 830, 2023
[40] Paolo, Aniello; Stefano, Mancini; Vincenzo, Parisi, Trace class operators and states in \(p\)-adic quantum mechanics, J. Math. Phys., 64, 5, 2023, Paper No. 053506, 45 pp · Zbl 1512.81041
[41] Aref’eva, I. Ya.; Volovich, I. V., Quantum group particles and non-Archimedean geometry, Phys. Lett. B, 268, 2, 179-187, 1991
[42] Baxter Rodney, J., Exactly Solved Models in Statistical Mechanics, 1982, Academic Press, Inc.: Academic Press, Inc. London · Zbl 0538.60093
[43] Biedenharn, L. C., The quantum group \(S U q ( 2 )\) and a \(q\)-analogue of the boson operators, J. Phys. A, 22, 18, L873-L878, 1989 · Zbl 0708.17015
[44] Thomas, Ernst, A Comprehensive Treatment of \(Q\)-Calculus, 2012, Birkhäuser/Springer Basel AG: Birkhäuser/Springer Basel AG Basel · Zbl 1256.33001
[45] Erzan, Ayşe; Eckmann, Jean-Pierre, \(q\)-Analysis of fractal sets, Phys. Rev. Lett., 78, 17, 3245-3248, 1997 · Zbl 0949.28007
[46] Finkelstein, R. J., Quantum groups and field theory, Modern Phys. Lett. A, 15, 28, 1709-1715, 2000 · Zbl 0973.81049
[47] Finkelstein, R. J., Observable properties of \(q\)-deformed physical systems, Lett. Math. Phys., 49, 2, 105-114, 1999 · Zbl 0986.81043
[48] Victor, Kac; Cheung, Pokman, (Quantum Calculus. Quantum Calculus, Universitext, 2002, Springer-Verlag: Springer-Verlag New York) · Zbl 0986.05001
[49] Klimyk, Anatoli; Schmüdgen, Konrad, Quantum groups and their representations, (Texts and Monographs in Physics, 1997, Springer-Verlag: Springer-Verlag Berlin) · Zbl 0891.17010
[50] Lavagno, A., Basic-deformed quantum mechanics, Rep. Math. Phys., 64, 1-2, 79-91, 2009 · Zbl 1204.81095
[51] Lavagno, A., Deformed quantum mechanics and \(q\)-Hermitian operators, J. Phys. A, 41, 24, Article 244014 pp., 2008, 9pp · Zbl 1140.81418
[52] Lavagno, A.; Scarfone, A. M.; Narayana Swamy, P., Basic-deformed thermostatistics, J. Phys. A, 40, 30, 8635-8654, 2007 · Zbl 1137.82006
[53] Macfarlane, A. J., On \(q\)-analogues of the quantum harmonic oscillator and the quantum group \(S U ( 2 ) q\), J. Phys. A, 22, 21, 4581-4588, 1989 · Zbl 0722.17009
[54] Manin Yuri, I., Quantum groups and noncommutative geometry, (CRM Short Courses, 2018, Springer: Springer Cham) · Zbl 1430.16001
[55] Wess, Julius; Zumino, Bruno, Covariant differential calculus on the quantum hyperplane, Nuclear Phys. B Proc. Suppl., 18B, 302-312, 1990, (1991) · Zbl 0957.46514
[56] Zhang, Jian-zu, Spectrum of \(q\)-deformed Schrödinger equation, Phys. Lett. B, 477, 1-3, 361-366, 2000 · Zbl 1050.81529
[57] Zhang, Jian-zu, A \(q\)-deformed uncertainty relation, Phys. Lett. A, 262, 2-3, 125-130, 1999 · Zbl 1044.81645
[58] Zhang, Jian-zu, A \(q\)-deformed quantum mechanics, Phys. Lett. B, 440, 1-2, 66-68, 1998
[59] Zúñiga-Galindo, W. A., Non-Archimedean quantum mechanics via quantum groups, Nuclear Phys. B, 985, 2022, Paper No. 116021, 21 pp · Zbl 1516.81131
[60] Schwinger, Julian, Unitary operator bases, Proc. Nat. Acad. Sci. U.S.A., 46, 570-579, 1960 · Zbl 0090.19006
[61] Schwinger, Julian, The special canonical group, Proc. Natl. Acad. Sci. USA, 46, 1401-1415, 1960 · Zbl 0125.21603
[62] H. Weyl, The Theory of Groups and Quantum Mechanics, Dutton, NY, 1932.
[63] Digernes, Trond; Varadarajan, V. S.; Varadhan, S. R.S., Finite approximations to quantum systems, Rev. Math. Phys., 6, 4, 621-648, 1994 · Zbl 0855.47046
[64] Varadarajan, V. S., Non-archimedean models for space-time, Mod. Phys. Lett. A., 16, 387-395, 2001
[65] Varadarajan, V. S., Arithmetic quantum physics: Why, what, and whither, Trudy, Mat. Inst. Steklova, 245, 273-280, 2004 · Zbl 1098.11065
[66] Vourdas, A., Quantum systems with finite Hilbert space, Rep. Progr. Phys., 67, 3, 267-320, 2004
[67] Bakken, E. M.; Digernes, Trond, Finite approximations of physical models over local fields. \(p\)-adic numbers ultrametric, Anal. Appl., 7, 4, 245-258, 2015 · Zbl 1345.47067
[68] Digernes, Trond, A review of finite approximations, archimedean and non-archimedean. p-adic numbers ultrametric, Anal. Appl., 10, 4, 253-266, 2018 · Zbl 1457.81046
[69] Vourdas, Apostolos, Finite and profinite quantum systems, (Quantum Sci. Technol, 2017, Springer: Springer Cham) · Zbl 1379.81004
[70] Zúñiga Galindo, W. A., \(p\)-adic statistical field theory and convolutional deep Boltzmann machines, Prog. Theor. Exp. Phys., 2023, 6, 063A01, 2023 · Zbl 1528.81187
[71] Zúñiga-Galindo, W. A., \(p\)-adic statistical field theory and deep belief networks, Phys. A, 612, 2023, Paper No. 128492, 23 pp · Zbl 1509.82103
[72] Taira, Kazuaki, Boundary value problems and Markov processes, (Functional Analysis Methods for Markov Processes. Functional Analysis Methods for Markov Processes, Lecture Notes in Math., vol. 1499, 2020, Springer: Springer Cham) · Zbl 1456.60003
[73] Zee, A., Quantum Field Theory in a Nutshell, 2010, Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1277.81001
[74] Chistyakov, D. V., Fractal geometry of images of continuous embeddings of p-adic numbers and solenoids into Euclidean spaces, Theoret. and Math. Phys., 109, 3, 1495-1507, 1996 · Zbl 0937.28007
[75] Albeverio, S.; Yu, Khrennikov A.; Shelkovich, V. M., Theory of \(p\)-adic distributions: linear and nonlinear models, (London Mathematical Society Lecture Note Series, vol. 370, 2010, Cambridge University Press) · Zbl 1198.46001
[76] Alexander, Bendikov; Alexander, Grigor’yan; Stanislav, Molchanov, Hierarchical Schrödinger type operators: the case of locally bounded potentials, (Operator Theory and Harmonic Analysis—OTHA 2020. Part II. Probability-Analytical Models, Methods and Applications. Operator Theory and Harmonic Analysis—OTHA 2020. Part II. Probability-Analytical Models, Methods and Applications, Springer Proc. Math. Stat., vol. 358, 2021, Springer: Springer Cham), 43-89 · Zbl 1490.34105
[77] Khrennikov, Andrei; Sergei, Kozyrev; Zúñiga-Galindo, W. A., (Ultrametric Equations and its Applications. Ultrametric Equations and its Applications, Encyclopedia of Mathematics and Its Applications, vol. 168, 2018, Cambridge University Press) · Zbl 1397.35350
[78] Sergio, Albeverio; Kozyrev, Sergei V., Multidimensional basis of p -adic wavelets and representation theory. p-adic numbers ultrametric, Anal. Appl., 1, 3, 181-189, 2009 · Zbl 1187.42030
[79] Evans Steven, N., Local field Gaussian measures, (Seminar on Stochastic Processes, 1988 121-160. Seminar on Stochastic Processes, 1988 121-160, Progr. Probab., vol. 17, 1989, Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA) · Zbl 0675.60033
[80] McClendon, M.; Rabitz, H., Numerical simulations in stochastic mechanics, Phys. Rev. A, 37, 3479-3492, 1988
[81] Webb, G. F., Event based interpretation of Schrödinger’s equation for the two-slit experiment, Internat. J. Theoret. Phys., 50, 3571-3601, 2011 · Zbl 1245.81002
[82] Webb Glenn, The Schrödinger equation and the two-slit experiment of quantum mechanics, Discrete Contin. Dyn. Syst. - S http://dx.doi.org/10.3934/dcdss.2023001. · Zbl 1541.35164
[83] Taibleson, M. H., Fourier Analysis on Local Fields, 1975, Princeton University Press · Zbl 0319.42011
[84] Halmos, P., Measure Theory, 1950, D. Van Nostrand Company Inc.: D. Van Nostrand Company Inc. New York · Zbl 0040.16802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.