×

Direct \(\mathrm{FE}^2\) for concurrent multilevel modeling of heterogeneous thin plate structures. (English) Zbl 1507.74522

Summary: The \(\mathrm{FE}^2\) method systematically translates macro kinematic constraints to the underlying (micro) RVEs and extracts the effective RVE responses to macro continuum in an energetically consistent manner. In the literature, many researchers have demonstrated the predictive capability of \(\mathrm{FE}^2\) across a wide range of problems. The conventional \(\mathrm{FE}^2\) numerical framework adopts a staggered solution strategy between the macro and micro analyses. This limits the adoption of \(\mathrm{FE}^2\) method by inexperienced researchers/engineers to solve practical engineering problems using commercial FE software. To this end, a Direct \(\mathrm{FE}^2\) method has been proposed in [V. B. C. Tan et al., Comput. Methods Appl. Mech. Eng. 360, Article ID 112694, 19 p. (2020; Zbl 1441.74276)] and implemented in the commercial software ABAQUS, where macro kinematic constraints are applied directly on the RVEs superimposed on the macro elements. This results in a monolithic numerical framework, without the need to write any subroutines. Compared to the conventional \(\mathrm{FE}^2\) implementation using commercial software, the number of floating-point operations is also reduced because the nested FE calculations are condensed into one in Direct \(\mathrm{FE}^2\) [K. Raju, T.-E. Tay and V. B. C. Tan, “A review of the \(\mathrm{FE}^2\) method for composites”, Multiscale and Multidiscip. Model. Exp. and Des. 4, 1–24 (2021; doi:10.1007/s41939-020-00087-x)]. In this contribution focusing on thin plate structures, the Direct \(\mathrm{FE}^2\) method is extended based on Kirchhoff-Love thin plate kinematics and implemented in ABAQUS without the need for subroutines. The performance of the Direct \(\mathrm{FE}^2\) method for this higher order formulation is demonstrated by comparing against reference solutions from direct numerical simulations. Sample files can be downloaded from https://github.com/leonghien/Direct-FE2-thin-plates.git.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates

Citations:

Zbl 1441.74276
Full Text: DOI

References:

[1] Smit, R. J.M.; Brekelmans, W. A.M.; Meijer, H. E.H., Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling, Comput. Methods Appl. Mech. Engrg., 155, 181-192 (1998) · Zbl 0967.74069
[2] Feyel, F., Multiscale FE^2 elastoviscoplastic analysis of composite structures, Comput. Mater. Sci., 16, 344-354 (1999)
[3] Feyel, F.; Chaboche, J., Multi-scale non-linear FE^2 analysis of composite structures: damage and fiber size effects, Rev. Eur. Des élém. Finis., 10, 449-472 (2001) · Zbl 1169.74599
[4] Feyel, F.; Chaboche, J.-L., FE^2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Methods Appl. Mech. Engrg., 183, 309-330 (2000) · Zbl 0993.74062
[5] Feyel, F., A multilevel finite element method (FE^2) to describe the response of highly non-linear structures using generalized continua, Comput. Methods Appl. Mech. Engrg., 192, 3233-3244 (2003) · Zbl 1054.74727
[6] Terada, K.; Kikuchi, N., A class of general algorithms for multiscale analyses of heterogeneous media, Comput. Methods Appl. Mech. Engrg., 190, 5427-5464 (2001) · Zbl 1001.74095
[7] Terada, K.; Hori, M.; Kyoya, T.; Kikuchi, N., Simulation of the multiscale convergence in computational homogenization approaches, Int. J. Solids Struct., 37, 2285-2311 (2000) · Zbl 0991.74056
[8] Miehe, C.; Schröder, J.; Becker, M., Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro- and macro-scales of periodic composites and their interaction, Comput. Methods Appl. Mech. Engrg., 191, 4971-5005 (2002) · Zbl 1099.74517
[9] Schröder, J.; Labusch, M.; Keip, M. A., Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE^2-scheme: Localization and homogenization, Comput. Methods Appl. Mech. Engrg., 302, 253-280 (2016) · Zbl 1425.74393
[10] Nezamabadi, S.; Yvonnet, J.; Zahrouni, H.; Potier-Ferry, M., A multilevel computational strategy for handling microscopic and macroscopic instabilities, Comput. Methods Appl. Mech. Engrg., 198, 2099-2110 (2009) · Zbl 1227.74026
[11] Nezamabadi, S.; Potier-Ferry, M.; Zahrouni, H.; Yvonnet, J., Compressive failure of composites: a computational homogenization approach, Compos. Struct., 127, 60-68 (2015)
[12] Yvonnet, J.; He, Q. C., The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains, J. Comput. Phys., 223, 341-368 (2007) · Zbl 1163.74048
[13] Tikarrouchine, E.; Benaarbia, A.; Chatzigeorgiou, G.; Meraghni, F., Non-linear FE^2 multiscale simulation of damage, micro and macroscopic strains in polyamide 66-woven composite structures: analysis and experimental validation, Compos. Struct., 255, Article 112926 pp. (2021)
[14] Schröder, J., (J. Schröder, K. Hackl, A Numerical Two-Scale Homogenization Scheme: The FE^2-Method Bt - Plasticity and beyond: Microstructures, Crystal-Plasticity and Phase Transitions (2014), Springer Vienna: Springer Vienna Vienna), 1-64
[15] Tikarrouchine, E.; Chatzigeorgiou, G.; Praud, F.; Piotrowski, B.; Chemisky, Y.; Meraghni, F., Three-dimensional FE^2 method for the simulation of non-linear, rate-dependent response of composite structures, Compos. Struct., 193, 165-179 (2018)
[16] Nezamabadi, S.; Yvonnet, J.; Zahrouni, H.; Potier-Ferry, M., A multilevel computational strategy for handling microscopic and macroscopic instabilities, Comput. Methods Appl. Mech. Engrg., 198, 2099-2110 (2009) · Zbl 1227.74026
[17] Tchalla, A.; Belouettar, S.; Makradi, A.; Zahrouni, H., An ABAQUS toolbox for multiscale finite element computation, Composites B, 52, 323-333 (2013)
[18] Geers, M. G.D.; Coenen, E. W.C.; Kouznetsova, V. G., Multi-scale computational homogenization of structured thin sheets, Model Simul. Mater. Sci. Eng., 15, S393 (2007)
[19] Otero, F.; Martinez, X.; Oller, S.; Salomón, O., An efficient multi-scale method for non-linear analysis of composite structures, Compos. Struct., 131, 707-719 (2015)
[20] Tan, V. B.C.; Raju, K.; Lee, H. P., Direct FE^2 for concurrent multilevel modelling of heterogeneous structures, Comput. Methods Appl. Mech. Engrg., 360, Article 112694 pp. (2020) · Zbl 1441.74276
[21] Raju, K.; Tay, T. E.; Tan, V. B.C., A review of the FE^2 method for composites, Multiscale Multidiscip. Model. Exp. Des., 4, 1-24 (2021)
[22] Zhi, J.; Raju, K.; Tay, T. E.; Tan, V. B.C., Transient multi-scale analysis with micro-inertia effects using direct FE^2 method, Comput. Mech., 67, 1645-1660 (2021) · Zbl 1467.74090
[23] Zhi, J.; Raju, K.; Tay, T. E.; Tan, V. B.C., Multiscale analysis of thermal problems in heterogeneous materials with direct FE^2 method, Internat. J. Numer. Methods Engrg., 122, 7482-7503 (2021) · Zbl 07863848
[24] Lange, N.; Hütter, G.; Kiefer, B., An efficient monolithic solution scheme for FE^2 problems, Comput. Methods Appl. Mech. Engrg., 382, Article 113886 pp. (2021) · Zbl 1506.74414
[25] Kouznetsova, V. G.; Geers, M. G.D.; Brekelmans, W. A.M., Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Comput. Methods Appl. Mech. Engrg., 193, 5525-5550 (2004) · Zbl 1112.74469
[26] Nguyen, V. D.; Noels, L., Computational homogenization of cellular materials, Int. J. Solids Struct., 51, 2183-2203 (2014)
[27] Jänicke, R.; Diebels, S.; Sehlhorst, H. G., Two-scale modelling of micromorphic continua, Contin. Mech. Therm., 21, 297-315 (2009) · Zbl 1234.74010
[28] Biswas, R.; Poh, L. H., A micromorphic computational homogenization framework for heterogeneous materials, J. Mech. Phys. Solids, 102, 187-208 (2017)
[29] Coenen, E. W.C.; Kouznetsova, V. G.; Geers, M. G.D., Computational homogenization for heterogeneous thin sheets, Internat. J. Numer. Methods Engrg., 83, 1180-1205 (2010) · Zbl 1197.74082
[30] Gruttmann, F.; Wagner, W., A coupled two-scale shell model with applications to layered structures, Internat. J. Numer. Methods Engrg., 94, 1233-1254 (2013) · Zbl 1352.74173
[31] Helfen, C.; Diebels, S., Numerical multiscale modelling of sandwich plates. Technische mechanik, Sci. J. Fund. Appl. Eng. Mech., 32, 2-5, 251-2643 (2012)
[32] Helfen, C.; S. Diebels, S., Computational homogenisation of composite plates: consideration of the thickness change with a modified projection strategy, Comput. Math. Appl., 67, 1116-1129 (2014) · Zbl 1381.74031
[33] Bažant, Z. P.; Oh, B. H., Crack band theory for fracture of concrete, Mat. Constr., 16, 155-177 (1983)
[34] Sciegaj, A.; Grassl, P.; Larsson, F.; Runesson, K.; Lundgren, K., Upscaling of three-dimensional reinforced concrete representative volume elements to effective beam and plate models, Int. J. Solids Struct., 202, 835-853 (2020)
[35] Kouznetsova, V.; Brekelmans, W. A.M.; Baaijens, F. P.T., An approach to micro-macro modeling of heterogeneous materials, Comput. Mech., 27, 37-48 (2001) · Zbl 1005.74018
[36] Miehe, C., Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy, Comput. Methods Appl. Mech. Engrg., 192, 559-591 (2003) · Zbl 1091.74530
[37] Abel, J. F.; Shephard, M. S., An algorithm for multipoint constraints in finite element analysis, Internat. J. Numer. Methods Engrg., 14, 464-467 (1979) · Zbl 0393.65017
[38] Shi, Z.; Zhong, Y.; Yi, Q.; Peng, X., High efficiency analysis model for composite honeycomb sandwich plate by using variational asymptotic method, Thin Wall. Struct., 163, Article 107709 pp. (2021)
[39] Abaqus 6.14 Analysis User’s Guide.
[40] Yang, S.; Dirrenberger, J.; Monteiro, E.; Ranc, N., Representative volume element size determination for viscoplastic properties in polycrystalline materials, Int. J. Solids Struct., 158, 210-219 (2019)
[41] Svenning, E.; Fagerström, M.; Larsson, F., Localization aligned weakly periodic boundary conditions, Internat. J. Numer. Methods Engrg., 111, 493-500 (2017) · Zbl 07867108
[42] Unger, J. F., An FE2-X1 approach for multiscale localization phenomena, J. Mech. Phys. Solids, 61, 928-948 (2013)
[43] Coenen, E. W.C.; Kouznetsova, V. G.; Geers, M. G.D., Novel boundary conditions for strain localization analyses in microstructural volume elements, Internat. J. Numer. Methods Engrg., 90, 1-21 (2012) · Zbl 1242.74083
[44] Šmilauer, V.; Hoover, C. G.; Bažant, Z. P., Multiscale simulation of fracture of braided composites via repetitive unit cells, Eng. Fract. Mech., 78, 901-918 (2011)
[45] Raghavan, P.; Ghosh, S., Concurrent multi-scale analysis of elastic composites by a multi-level computational model, Comput. Methods Appl. Mech. Engrg., 193, 497-538 (2004) · Zbl 1060.74590
[46] Wang, X.; Cai, D.; Silberschmidt, V.; Deng, J., Tensile properties of 3D multi-layer wrapping braided composite: Progressive damage analysis, Composites B, 176, Article 107334 pp. (2019)
[47] Alfarah, B.; López-Almansa, F.; Oller, S., New methodology for calculating damage variables evolution in plastic damage model for RC structures, Eng. Struct., 132, 70-86 (2017)
[48] Ceb-Fip, Model code 2010, International federation for structural concrete (fib) (2010)
[49] Petrangeli, M.; Ožbolt, J., Smeared crack approaches—material modeling, J. Eng. Mech.-ASCE, 122, 545-554 (1996)
[50] Naotunna, C. N.; Samarakoon, S. M.; Samindi, M. K.; Fosså, K. T., A new crack spacing model for reinforced concrete specimens with multiple bars subjected to axial tension using 3D nonlinear FEM simulations, Struct. Concrete, 1-14 (2021)
[51] Červenka, J.; Červenka, V.; Laserna, S., On crack band model in finite element analysis of concrete fracture in engineering practice, Eng. Fract. Mech., 197, 27-47 (2018)
[52] Sciegaj, A.; Larsson, F.; Lundgren, K.; Nilenius, F.; Runesson, K., A multiscale model for reinforced concrete with macroscopic variation of reinforcement slip, Comput. Mech., 63, 139-158 (2019) · Zbl 1468.74011
[53] Sciegaj, A.; Larsson, F.; Lundgren, K.; Runesson, K., On a volume averaged measure of macroscopic reinforcement slip in two-scale modeling of reinforced concrete, Internat. J. Numer. Methods Engrg., 12, 1822-1846 (2020) · Zbl 07843270
[54] Sciegaj, A.; Larsson, F.; Lundgren, K.; Nilenius, F.; Runesson, K., Two-scale finite element modelling of reinforced concrete structures: Effective response and subscale fracture development, Internat. J. Numer. Methods Engrg., 114, 1074-1102 (2018) · Zbl 07878350
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.