×

On the study of three-dimensional compressible Navier-Stokes equations. (English) Zbl 07897010

Summary: This work is devoted to the study of three-dimensional compressible Navier-Stokes equations on unstructured meshes. The approach used is based on separating the convection and diffusion parts. The convective flux is computed using the Godunov method. For the diffusive part, we present a new finite volume scheme. Numerical results are provided to demonstrate the efficiency of the developed technique.

MSC:

35Q30 Navier-Stokes equations
65N08 Finite volume methods for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76N06 Compressible Navier-Stokes equations

References:

[1] Wang, J.; Jiang, H., Time decay of solutions for compressible isentropic non-Newtonian fluids, Bound. Value Probl., 2024, 2024 · Zbl 1537.35082 · doi:10.1186/s13661-023-01808-0
[2] Watanabe, K., Stability of stationary solutions to the three-dimensional Navier-Stokes equations with surface tension, Adv. Nonlinear Anal., 12, 1, 1-35, 2023 · Zbl 1506.35147
[3] Guo, Y.; Sun, R.; Wang, W., Optimal time-decay rates of the Keller-Segel system coupled to compressible Navier-Stokes equation in three dimensions, Bound. Value Probl., 2022, 2022 · Zbl 1504.35582 · doi:10.1186/s13661-022-01618-w
[4] Hammad, H. A.; Aydi, H.; Kattan, D. A., Hybrid interpolative mappings for solving fractional Navier-Stokes and functional differential equations, Bound. Value Probl., 2023, 2023 · Zbl 07829902 · doi:10.1186/s13661-023-01807-1
[5] Tong, L., Global existence and decay estimates of the classical solution to the compressible Navier-Stokes-Smoluchowski equations in \(r^3\), Adv. Nonlinear Anal., 13, 1, 1-25, 2024 · Zbl 1534.35330
[6] Abdelwahed, M.; Chorfi, N.; Mezghani, N.; Ouertani, H., An algorithm for solving the Navier-Stokes problem with mixed boundary conditions, Bound. Value Probl., 2022, 2022 · Zbl 1512.35433 · doi:10.1186/s13661-022-01678-y
[7] Girault, V.; Raviart, P. A., Finite Element Approximation of the Navier-Stokes Equations, 1981, Berlin: Springer, Berlin · Zbl 0441.65081
[8] Glowinski, R.; Pironneau, O., Finite element methods for Navier-Stokes equations, Annu. Rev. Fluid Mech., 24, 167-204, 1992 · Zbl 0743.76051 · doi:10.1146/annurev.fl.24.010192.001123
[9] Temam, R., Sur L’approximation de la Solution des Equations de Navier-Stokes Par la Méthode des Pas Fractionnaires, 1984, Amsterdam: North-Holland, Amsterdam · Zbl 0207.16904
[10] Abdelwahed, M.; Chorfi, N., Spectral discretization of the time-dependent Navier-Stokes problem with mixed boundary conditions, Adv. Nonlinear Anal., 11, 1, 1447-1465, 2022 · Zbl 1497.35336 · doi:10.1515/anona-2022-0253
[11] Bernardi, C.; Maday, Y., Approximation Spectrales Pour les Problèmes aux Limites Elliptiques, 1992, Paris: Springer, Paris · Zbl 0773.47032
[12] Hussaini, M. Y.; Canuto, C.; Quarteroni, A.; Zang, T. A., Numerical Solutions for a Comparison Problem on Natural Convection in Enclosed Cavity, 1988, Berlin: Springer, Berlin
[13] Minev, P. D.; Timmernans, L. J.P.; Van De Vosse, F. N., An approximate projection scheme for incompressible flow using spectral elements, Int. J. Numer. Methods Fluids, 22, 673-688, 1996 · Zbl 0865.76070 · doi:10.1002/(SICI)1097-0363(19960415)22:7<673::AID-FLD373>3.0.CO;2-O
[14] Boivin, S.; Cayré, F.; Hérard, J. M., A finite volume method to solve the Navier-Stokes equations for incompressible flows on unstructured meshes, Int. J. Therm. Sci., 39, 806-825, 2000 · doi:10.1016/S1290-0729(00)00276-3
[15] Boivin, S.; Hérard, J. M.; Perron, S., A finite volume method to solve the 3d Navier-Stokes equations on unstructured collocated meshes, Comput. Fluids, 33, 10, 1305-1333, 2004 · Zbl 1075.76044 · doi:10.1016/j.compfluid.2003.10.006
[16] Pironneau, O., Méthodes des éléments Finis Pour les Fluides, 1988, Paris: Masson, Paris · Zbl 0748.76003
[17] Abboud, H.; Sayah, T., A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme, Math. Model. Numer. Anal., 42, 1, 141-174, 2008 · Zbl 1137.76032 · doi:10.1051/m2an:2007056
[18] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745-762, 1968 · Zbl 0198.50103 · doi:10.1090/S0025-5718-1968-0242392-2
[19] Jobelin, M.; Piar, B.; Angot, P.; Latché, J.-C., Une méthode de pénalité-projection pour les écoulements dilatables, Rev. Eur. Méc. Numér., 17, 4, 453-480, 2008 · Zbl 1292.76048
[20] Eymard, R.; Gallouët, T.; Herbin, R., A cell-centred finite volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal., 26, 326-353, 2006 · Zbl 1093.65110 · doi:10.1093/imanum/dri036
[21] Eymard, R.; Gallouët, T.; Herbin, R., Finite Volume Methods, Handbook of Numerical Analysis, 2000, Amsterdam: North Holland, Amsterdam · Zbl 1060.76075
[22] Domelevo, K.; Omnes, P., A finite volume scheme for the Laplace equation on almost arbitrary two-dimensional grids, Math. Model. Numer. Anal., 39, 6, 1203-1249, 2005 · Zbl 1086.65108 · doi:10.1051/m2an:2005047
[23] Manzini, G.; Russo, A., A finite volume method for advection diffusion problems in convection-dominated regimes, Comput. Methods Appl. Mech. Eng., 197, 1242-1261, 2008 · Zbl 1159.76356 · doi:10.1016/j.cma.2007.11.014
[24] Jacques, M.; Saurel, R.; Nkonga, B.; Abgrall, R., Propositions de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur, Int. J. Heat Mass Transf., 45, 6, 1287-1307, 2002 · Zbl 1121.76378 · doi:10.1016/S0017-9310(01)00238-1
[25] Abgrall, R.; Saurel, R., A simple method for compressible multiphase flows, SIAM J. Sci. Comput., 21, 3, 1115-1145, 1999 · Zbl 0957.76057 · doi:10.1137/S1064827597323749
[26] Andrainov, N., Richard, S.W.: A simple method for compressible multiphase mixture and interfaces. Rapport de recherche 4247, INRIA (2001)
[27] Rouy, S.: Modélisation mathématique et numérique d’écoulement diphasique compressible. application au cas industriel d’un générateur de gaz. PhD thesis, Université de Toulou et du Var (2000)
[28] Edwige, G.; Raviart, P. A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, 1996, New York: Springer, New York · Zbl 0860.65075
[29] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics, 1997, Paris: Springer, Paris · Zbl 0888.76001 · doi:10.1007/978-3-662-03490-3
[30] Abdelwahed, M.; Chorfi, N., On the convergence analysis of a time dependent elliptic equation with discontinuous coefficients, Adv. Nonlinear Anal., 9, 1, 1145-1160, 2020 · Zbl 1435.35146 · doi:10.1515/anona-2020-0043
[31] Serre, D., Système de Lois de Conservation I, 1996, Paris: Springer, Paris · Zbl 0930.35002
[32] Villa, J.P.: Sur la théorie et l’approximation de problèmes hyperboliques non linéaires application aux équations de saint venant et à la modélisation des avalanches de neige dense. PhD thesis, Université de Paris VI (1986)
[33] Dubois, F.: Résolution Numérique du Problème de Riemann, Polycopier du cours dea analyse numérique edn. Ecole Polytechnique, Université Paris V, Paris XIII. Ecole Polytechnique, Université Paris V
[34] Kirkkörrü, K.; Uygun, M., Numerical solution of the Euler equations by finite volume methods: central versus upwind schemes, J. Aeronaut. Spaces Tech., 2, 1, 47-55, 2005
[35] Chorfi, N.; Abdelwahed, M.; Berselli, C., On the analysis of geometrically selective turbulence model, Adv. Nonlinear Anal., 9, 1, 1402-1419, 2020 · Zbl 1437.35532 · doi:10.1515/anona-2020-0057
[36] Faille, I., A control volume method to solve an elliptic equation on two-dimensional irregular mesh, Comput. Methods Appl. Mech. Eng., 100, 1992, 1992 · Zbl 0761.76068 · doi:10.1016/0045-7825(92)90186-N
[37] Gary, A. S., A survey of several finite difference methods for systems of non-linear hyperbolic conservation law, J. Comput. Phys., 2, 1-31, 1978 · Zbl 0387.76063
[38] Lax, P. D., Weak solutions of non-linear hyperbolic equations and their numerical approximation, Commun. Pure Appl. Math., 7, 159-193, 1954 · Zbl 0055.19404 · doi:10.1002/cpa.3160070112
[39] Jones, I.P., Thompson, P.: Numerical solutions for a comparison problem on natural convection in enclosed cavity. Technical report, Computer Science and Sys. Division, AERE Harwell (1981)
[40] Djadel, K.; Nicaise, S., A non-conforming finite volume element method of weighted upstream type for the two-dimensional stationary Navier-Stokes system, Appl. Numer. Math., 58, 615-634, 2008 · Zbl 1134.76038 · doi:10.1016/j.apnum.2007.01.012
[41] Thomasset, F., Implement of the Finite Element Method for Navier-Stokes Equations, 1981, Paris: Springer, Paris · Zbl 0475.76036 · doi:10.1007/978-3-642-87047-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.