×

Linear canonical Hankel domain based Stockwell transform and associated Heisenberg’s uncertainty principle. (English) Zbl 07822493

Summary: Linear canonical Hankel domain based Stockwell transform (LCHST) is the generalization of Hankel-Stockwell transform. In this paper, we propose the definition of LCHST and then obtain the classical results associated with the proposed transform. The crux of the paper lies in proving a sharp version of Heisenberg’s uncertainty principle for LCHST.

MSC:

44A05 General integral transforms
44A15 Special integral transforms (Legendre, Hilbert, etc.)
Full Text: DOI

References:

[1] Cowling, MG; Price, JF, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM Journal on Mathematical Analysis, 15, 1, 151-164 (1984) · doi:10.1137/0515012
[2] Price, JF, Inequalities and local uncertainty principles, Journal of Mathematical Physics, 24, 7, 1711-1713 (1983) · Zbl 0513.60100 · doi:10.1063/1.525916
[3] Hleili, K., Uncertainty principles for spherical mean \(L^2\)-multiplier operators, Journal of Pseudo-Differential Operators and Applications, 9, 3, 573-587 (2018) · Zbl 1400.43001 · doi:10.1007/s11868-017-0197-9
[4] Hleili, K., Some results for the windowed Fourier transform related to the spherical mean operator, Acta Mathematica Vietnamica, 2020, 1-24 (2020)
[5] Rösler, M., An uncertainty principle for the Dunkl transform, Bulletin of the Australian Mathematical Society, 59, 3, 353-360 (1999) · Zbl 0939.33012 · doi:10.1017/S0004972700033025
[6] Banerjee, PP; Nehmetallah, G.; Chatterjee, MR, Numerical modeling of cylindrically symmetric nonlinear self-focusing using an adaptive fast Hankel split-step method, Optics Communications, 249, 1-3, 293-300 (2005) · doi:10.1016/j.optcom.2004.12.048
[7] Lohmann, AW; Mendlovic, D.; Zalevsky, Z.; Dorsch, RG, Some important fractional transformations for signal processing, Optics Communications, 125, 1-3, 18-20 (1996) · doi:10.1016/0030-4018(95)00748-2
[8] Bowie, PC, Uncertainty inequalities for Hankel transforms, SIAM Journal on Mathematical Analysis, 2, 4, 601-606 (1971) · Zbl 0235.44002 · doi:10.1137/0502059
[9] Omri, S., Logarithmic uncertainty principle for the Hankel transform, Integral Transforms and Special Functions, 22, 9, 655-670 (2011) · Zbl 1227.42010 · doi:10.1080/10652469.2010.537266
[10] Tuan, VK, Uncertainty principles for the Hankel transform, Integral Transforms and Special Functions, 18, 5, 369-381 (2007) · Zbl 1122.44003 · doi:10.1080/10652460701320745
[11] Hamadi, NB; Hafirassou, Z.; Herch, H., Uncertainty principles for the Hankel-Stockwell transform, Journal of Pseudo-Differential Operators and Applications, 11, 2, 543-563 (2020) · Zbl 1442.43003 · doi:10.1007/s11868-020-00329-z
[12] Hleili K. 2021. A variety of uncertainty principles for the Hankel-Stockwell transform. Open Journal of Mathematical Analysis. · Zbl 1479.44002
[13] Debnath, L. 2014. and Shah. Wavelet Transforms and Their Applications, Birkhäuser: F.A.
[14] Prasad, A.; Ansari, ZA, Continuous Wavelet Transform Involving Linear Canonical Transform (2018), India: The National Academy of Sciences, India
[15] Rösler, M.; Voit, M., An uncertainty principle for Hankel transforms, Proceedings of the American Mathematical Society, 127, 183-194 (1999) · Zbl 0910.44003 · doi:10.1090/S0002-9939-99-04553-0
[16] Ma, R., Heisenberg uncertainty principle on Chébli-Trimèche hypergroups, Pacific Journal of Mathematics, 235, 289-296 (2008) · Zbl 1149.43007 · doi:10.2140/pjm.2008.235.289
[17] Soltani, F., A general form of Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkel transform, Integral Transforms and Special Functions, 24, 401-409 (2013) · Zbl 1270.42011 · doi:10.1080/10652469.2012.699966
[18] Bhat, M.Y., and A.H. Dar. 2021. Multiresolution analysis for linear canonical S transform. Advances in Operator Theory 6 (68). · Zbl 1479.42016
[19] Bhat, M.Y., and A.H. Dar. 2021. Wavelet packets associated with linear canonical transform on spectrum. International Journal of Wavelets, Multiresolution and Information Processing 2150030. · Zbl 1487.42080
[20] Bhat, M.Y., and A.H. Dar. 2023. Quaternion offset linear canonical transform in one-dimensional setting. The Journal of Analysis. doi:10.1007/s41478-023-00585-4. · Zbl 1535.42006
[21] Bhat, MY; Dar, AH, Quadratic phase S-Transform: Properties and uncertainty principles, e-Prime - Advances in Electrical Engineering, Electronics and Energy, 4, 100162 (2023) · doi:10.1016/j.prime.2023.100162
[22] Bhat, M.Y., and A.H. Dar. 2023. Quaternion linear canonical S -transform and associated uncertainty principles. International Journal of Wavelets Multiresolution and Information Processing 21 (01). doi:10.1142/S0219691322500357. · Zbl 1508.42007
[23] Dar, AH; Bhat, MY, Scaled ambiguity function and scaled Wigner distribution for LCT signals, Optik, 267, 169678 (2022) · doi:10.1016/j.ijleo.2022.169678
[24] Bhat, M.Y., and A.H. Dar. 2023. The two‐sided short‐time quaternionic offset linear canonical transform and associated convolution and correlation. Mathematical Methods in the Applied Sciences 46 (8): 8478-8495. doi:10.1002/mma.8994. · Zbl 1529.42009
[25] Dar, AH; Bhat, MY, Wigner distribution and associated uncertainty principles in the framework of octonion linear canonical transform, Optik, 272, 170213 (2023) · doi:10.1016/j.ijleo.2022.170213
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.