×

Analyzing single and multi-valued nonlinear Caputo two-term fractional differential equation with integral boundary conditions. (English) Zbl 07845336

Summary: This article primarily focuses on the single-valued and multi-valued cases of the class of nonlinear Caputo two-term fractional differential equation with three-point integral boundary conditions. In the single-valued case, we employ Schaefer’s fixed point theorem and the Banach fixed point theorem to establish results regarding the existence and uniqueness of solutions, using linear growth and Lipschitz conditions. Furthermore, we delve into the stability analysis of the single-valued problem using Ulam-Hyers and Ulam-Hyers-Rassias stabilities. In addition to the above, we address the multi-valued scenario and provide results on the existence of solutions. This is achieved by employing the Covitz-Nadler FPT and the nonlinear alternative for contractive maps. As an application of our fundamental findings, we present illustrative examples that validate our results. These examples have been implemented using MATLAB.

MSC:

34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34A08 Fractional ordinary differential equations
34D10 Perturbations of ordinary differential equations
34A60 Ordinary differential inclusions
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems

Software:

Matlab
Full Text: DOI

References:

[1] Ahmad, B.; Alsaedi, A.; Ntouyas, SK, Multi-term fractional boundary value problems with four point boundary conditions, J. Nonlinear Funct. Anal., 2019, 40, 2019 · doi:10.23952/jnfa.2019.40
[2] Ahmad, B.; Ntouyas, SK; Zhou, Y.; Alsaedi, A., A study of fractional differential equations and inclusions with nonlocal Erdélyi-Kober type integral boundary conditions, Bull. Iran. Math. Soc., 44, 1315-1328, 2018 · Zbl 1409.34004 · doi:10.1007/s41980-018-0093-y
[3] Ahmad, M.; Zada, A.; Ghaderi, M.; George, R.; Rezapour, S., On the existence and stability of a neutral stochastic fractional differential system, Fractal Fract., 6, 4, 1-16, 2022 · doi:10.3390/fractalfract6040203
[4] Bagley, RL; Torvik, PJ, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51, 294-298, 1984 · Zbl 1203.74022 · doi:10.1115/1.3167615
[5] Baleanu, D.; Etemad, S.; Mohammadi, H.; Rezapour, S., A novel modeling of boundary value problems on the glucose graph, Commun. Nonlinear Sci. Numer. Simul., 100, 2021 · Zbl 1466.92244 · doi:10.1016/j.cnsns.2021.105844
[6] Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S., A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fractals, 134, 2020 · Zbl 1483.92041 · doi:10.1016/j.chaos.2020.109705
[7] Baleanu, D.; Mohammadi, H.; Rezapour, S., Analysis of the model of HIV-1 infection of \(CD4^+\) T-cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020, 1, 1-7, 2020 · Zbl 1482.37090 · doi:10.1186/s13662-020-02544-w
[8] Bedi, P.; Kumar, A.; Abdeljawad, T.; Khan, A., Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators, Adv. Differ. Equ., 2020, 1, 1-5, 2020 · Zbl 1486.34018 · doi:10.1186/s13662-020-03074-1
[9] Bedi, P.; Kumar, A.; Abdeljawad, T.; Khan, A., Existence of mild solutions for impulsive neutral Hilfer fractional evolution equations, Adv. Differ. Equ., 2020, 1, 1-6, 2020 · Zbl 1482.34184 · doi:10.1186/s13662-020-02615-y
[10] Bedi, P.; Kumar, A.; Khan, A., Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives, Chaos Solitons Fractals, 150, 2021 · Zbl 1498.34018 · doi:10.1016/j.chaos.2021.111153
[11] Begum, R.; Tunç, O.; Khan, H.; Gulzar, H.; Khan, A., A fractional order Zika virus model with Mittag-Leffler kernel, Chaos Solitons Fractals, 146, 2021 · doi:10.1016/j.chaos.2021.110898
[12] Caponetto, R., Fractional Order Systems: Modeling and Control Applications, 2010, Singapore: World Scientific, Singapore · doi:10.1142/7709
[13] Carpentieri, B.: Advances in Dynamical Systems Theory Models, Algorithms and Applications. BoD-Books on Demand, IntechOpen, London-United Kingdom (2021)
[14] Castaing, C.; Valadier, M., Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, 1977, Berlin: Springer, Berlin · Zbl 0346.46038 · doi:10.1007/BFb0087685
[15] Covitz, H.; Nadler, SB Jr, Multivalued contraction mappings in generalized metric spaces, Isr. J. Math., 8, 5-11, 1970 · Zbl 0192.59802 · doi:10.1007/BF02771543
[16] Deimling, K., Multivalued Differential Equations, 1992, Berlin: Walter De Gruyter, Berlin · Zbl 0760.34002 · doi:10.1515/9783110874228
[17] Devi, A.; Kumar, A.; Baleanu, D.; Khan, A., On stability analysis and existence of positive solutions for a general non-linear fractional differential equations, Adv. Differ. Equ., 2020, 1, 1-6, 2020 · Zbl 1485.34033 · doi:10.1186/s13662-020-02729-3
[18] Devi, A.; Kumar, A.; Abdeljawad, T.; Khan, A., Stability analysis of solutions and existence theory of fractional Lagevin equation, Alex. Eng. J., 60, 4, 3641-7, 2021 · doi:10.1016/j.aej.2021.02.011
[19] Dhawan, K.; Vats, RK; Nain, AK; Shukla, A., Well-posedness and Ulam-Hyers stability of Hilfer fractional differential equations of order (1, 2] with nonlocal boundary conditions, Bull. Sci. Math., 191, 2024 · Zbl 1535.34011 · doi:10.1016/j.bulsci.2024.103401
[20] Dhawan, K.; Vats, RK; Agarwal, RP, Qualitative analysis of couple fractional differential equations involving Hilfer Derivative, An. St. Univ. Ovidius Constanta., 30, 1, 191-217, 2022 · Zbl 1538.34021
[21] Dhawan, K.; Vats, RK; Kumar, S.; Kumar, A., Existence and Stability analysis for nonlinear boundary value problem involving Caputo fractional derivative, Dyn. Contin. Discrete Impuls. Syst., 30, 107-121, 2023 · Zbl 1531.34009
[22] Dhawan, K.; Vats, RK; Vijaykumar, V., Analysis of neutral fractional differential equation via the method of upper and lower solution, Qual. Theory Dyn. Syst., 22, 93, 1-15, 2023 · Zbl 1518.34082
[23] Ehme, J.; Eloe, PW; Henderson, J., Upper and lower solution methods for fully nonlinear boundary value problems, J. Differ. Equ., 180, 51-64, 2002 · Zbl 1019.34015 · doi:10.1006/jdeq.2001.4056
[24] Etemad, S.; Avci, I.; Kumar, P.; Baleanu, D.; Rezapour, S., Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos Solitons Fractals, 162, 2022 · doi:10.1016/j.chaos.2022.112511
[25] Guezane-Lakoud, A.; Khaldi, R.; Torres, DFM, On a fractional oscillator equation with natural boundary conditions, Prog. Fract. Differ. Appl., 3, 191-197, 2017 · doi:10.18576/pfda/030302
[26] Hu, Sh., Papageorgiou, N.: Handbook of Multivalued Analysis, vol. I: Theory. Kluwer, Dordrecht (1997) · Zbl 0887.47001
[27] Hussain, S.; Madi, EN; Khan, H.; Gulzar, H.; Etemad, S.; Rezapour, S.; Kaabar, MK, On the stochastic modeling of COVID-19 under the environmental white noise, J. Funct. Spaces, 2022, 1-9, 2022 · Zbl 1494.34124
[28] Jeelani, MB; Saeed, AM; Abdo, MS; Shah, K., Positive solutions for fractional boundary value problems under a generalized fractional operator, Math. Methods Appl. Sci., 44, 11, 9524-40, 2021 · Zbl 1471.34018 · doi:10.1002/mma.7377
[29] Kamal, S., Nonlocal boundary value problems for nonlinear toppled system of fractional differential equations, Hacet. J. Math. Stat., 49, 1, 316-37, 2020 · Zbl 1499.34146 · doi:10.15672/hujms.552209
[30] Kamenskii, M.; Obukhovskii, V.; Petrosyan, G.; Yao, J., Boundary value problems for semi-linear differential inclusions of fractional order in a Banach space, Appl. Anal., 97, 4, 571-591, 2018 · Zbl 1467.34007 · doi:10.1080/00036811.2016.1277583
[31] Kaufmann, ER; Yao, KD, Existence of solutions for a nonlinear fractional order differential equation, Electron. J. Qual. Theory Differ. Equ., 71, 1-9, 2009 · Zbl 1195.34012
[32] Khan, H.; Alam, K.; Gulzar, H.; Etemad, S.; Rezapour, S., A case study of fractal-fractional tuberculosis model in China: existence and stability theories along with numerical simulations, Math. Comput. Simul., 198, 455-73, 2022 · Zbl 1540.92199 · doi:10.1016/j.matcom.2022.03.009
[33] Khan, H.; Alzabut, J.; Baleanu, D.; Alobaidi, G.; Rehman, MU, Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential equations with an application, AIMS Math., 8, 3, 6609-6625, 2023 · doi:10.3934/math.2023334
[34] Khan, H.; Alzabut, J.; Gulzar, H.; Tunç, O.; Pinelas, S., On system of variable order nonlinear p-Laplacian fractional differential equations with biological application, Mathematics, 11, 8, 1913, 2023 · doi:10.3390/math11081913
[35] Khan, H.; Alzabut, J.; Shah, A.; He, ZY; Etemad, S.; Rezapour, S.; Zada, A., On fractal-fractional waterborne disease model: a study on theoretical and numerical aspects of solutions via simulations, Fractals, 26, 2340055, 2023 · Zbl 1520.92068 · doi:10.1142/S0218348X23400558
[36] Khan, A.; Khan, ZA; Abdeljawad, T.; Khan, H., Analytical analysis of fractional-order sequential hybrid system with numerical application, Adv. Contin. Discrete Models, 2022, 1, 1-9, 2022 · doi:10.1186/s13662-022-03685-w
[37] Khan, A.; Li, Y.; Shah, K.; Khan, TS, On coupled-Laplacian fractional differential equations with nonlinear boundary conditions, Complexity, 2017, 1-10, 2017 · Zbl 1373.93157 · doi:10.1155/2017/8197610
[38] Khan, H.; Tunç, C.; Khan, A., Stability results and existence theorems for nonlinear delay-fractional differential equations with \(\varphi^*_p \)-operator, J. Appl. Anal. Comput., 10, 2, 584-597, 2020 · Zbl 1464.34103
[39] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations, 2006, Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[40] Kisielewicz, M., Differential Inclusions and Optimal Control, 1991, Dordrecht: Kluwer, Dordrecht · Zbl 0731.49001
[41] Lasota, A.; Opial, Z., An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13, 781-786, 1965 · Zbl 0151.10703
[42] Mainardi, F., Fractional Calculus, 1997, Berlin: Springer, Berlin
[43] Matar, MM; Abbas, MI; Alzabut, J.; Kaabar, MK; Etemad, S.; Rezapour, S., Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021, 1, 1-8, 2021 · Zbl 1487.34028 · doi:10.1186/s13662-021-03228-9
[44] Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S., A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fractals, 144, 2021 · doi:10.1016/j.chaos.2021.110668
[45] Marazzato, R., Sparavigna, A.C.: Astronomical image processing based on fractional calculus: the astrofractool (2009). arXiv:0910.4637
[46] Ntouyas, SK; Tariboon, J., Fractional boundary value problems with multiple orders of fractional derivative and integrals, Electron. J. Differ. Equ., 2017, 100, 1-18, 2017 · Zbl 1370.34018
[47] Oldham, KB, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41, 9-12, 2010 · Zbl 1177.78041 · doi:10.1016/j.advengsoft.2008.12.012
[48] Pales, Z., Generalized stability of the Cauchy functional equation, Aequationes Math., 56, 3, 222-232, 1998 · Zbl 0922.39008 · doi:10.1007/s000100050058
[49] Petryshyn, WV; Fitzpatrick, PM, A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact maps, Trans. Am. Math. Soc., 194, 1-25, 1974 · Zbl 0297.47049 · doi:10.1090/S0002-9947-1974-2478129-5
[50] Podlubny, I., Fractional Differential Equations, 1999, San Diego: Academic Press, San Diego · Zbl 0924.34008
[51] Saeed, AM; Abdo, MS; Jeelani, MB, Existence and Ulam-Hyers stability of a fractional-order coupled system in the frame of generalized Hilfer derivatives, Mathematics, 9, 20, 2543, 2021 · doi:10.3390/math9202543
[52] Shah, K.; Abdalla, B.; Abdeljawad, T.; Gul, R., Analysis of multipoint impulsive problem of fractional-order differential equations, Bound. Value Probl., 2023, 1, 1-7, 2023 · Zbl 1527.34023 · doi:10.1186/s13661-022-01688-w
[53] Shah, K.; Ali, G.; Ansari, KJ; Abdeljawad, T.; Meganathan, M.; Abdalla, B., On qualitative analysis of boundary value problem of variable order fractional delay differential equations, Bound. Value Probl., 2023, 1, 1-5, 2023 · doi:10.1186/s13661-022-01688-w
[54] Szekelyhidi, L., Ulam’s problem, note on a stability theorem, Can. Math. Bull., 25, 4, 500-501, 1982 · Zbl 0505.39002 · doi:10.4153/CMB-1982-074-0
[55] Tuan, NH; Mohammadi, H.; Rezapour, S., A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos Solitons Fractals, 140, 2020 · Zbl 1495.92104 · doi:10.1016/j.chaos.2020.110107
[56] Tabor, J.; Tabor, J., General stability of functional equations of linear type, J. Math. Anal. Appl., 328, 1, 192-200, 2007 · Zbl 1111.39027 · doi:10.1016/j.jmaa.2006.05.022
[57] Telli, B.; Souid, MS; Alzabut, J.; Khan, H., Existence and uniqueness theorems for a variable-order fractional differential equation with delay, Axioms, 12, 4, 339, 2023 · doi:10.3390/axioms12040339
[58] Ulam, SM, A Collection of the Mathematical Problems, 1960, New York: Interscience, New York · Zbl 0086.24101
[59] Wu, GC; Baleanu, D.; Zeng, SD, Discrete chaos in fractional sine and standard maps, Phys. Lett. A, 378, 484-87, 2014 · Zbl 1331.37048 · doi:10.1016/j.physleta.2013.12.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.