×

The directional short-time fractional Fourier transform of distributions. (English) Zbl 07914978

Summary: We introduce the directional short-time fractional Fourier transform (DSTFRFT) and prove an extended Parseval’s identity and a reconstruction formula for it. We also investigate the continuity of both the directional short-time fractional Fourier transform and its synthesis operator on the appropriate space of test functions. Using the obtained continuity results, we develop a distributional framework for the DSTFRFT on the space of tempered distributions \(\mathcal{S}' (\mathbb{R}^n)\). We end the article with a desingularization formula.

MSC:

46F12 Integral transforms in distribution spaces
44Axx Integral transforms, operational calculus
42Axx Harmonic analysis in one variable

References:

[1] Gröchenig, K., Foundation of Time-Frequency Analysis, 2001, Boston: Birkhäuser, Boston · Zbl 0966.42020 · doi:10.1007/978-1-4612-0003-1
[2] Bultheel, A.; Sulbaran, HM, An introduction to the fractional Fourier transform and friends, Cubo. Mat. Educ., 7, 201-221, 2005 · Zbl 1099.42004
[3] Kober, H., Wurzeln aus der Hankel- und Fourier und anderen stetigen Transformationen, Quart. J. Math. Oxford Ser., 10, 45-49, 1939 · JFM 65.0489.01 · doi:10.1093/qmath/os-10.1.45
[4] Namias, V., The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Maths. Appl., 25, 241-265, 1980 · Zbl 0434.42014 · doi:10.1093/imamat/25.3.241
[5] Almeida, LB, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process., 42, 11, 3084-3091, 1994 · doi:10.1109/78.330368
[6] Zayed, AI, Fractional Fourier transform of generalized functions, Integral Transf. Spec. Funct., 7, 3-4, 229-312, 1998 · Zbl 0941.46021 · doi:10.1080/10652469808819206
[7] Pathak, RS; Prasad, A.; Kumar, M., Fractional Fourier transform of temepered distributions and generalized pseudo-differential operator, J. Pseudo-Differ. Oper. Appl., 3, 239-254, 2012 · Zbl 1266.46031 · doi:10.1007/s11868-012-0047-8
[8] Ozaktas, H.; Zalevsky, Z.; Kutay, M., The Fractional Fourier Transform: With Application in Optics and Signal Processing, 2001, New York: Wiley, New York · doi:10.23919/ECC.2001.7076127
[9] Kamalakkannan, R.; Roopkumar, R., Multidimensional fractional Fourier transform and generalized fractional convolution, Integral Transforms Spec. Funct., 31, 2, 152-165, 2019 · Zbl 1431.42010 · doi:10.1080/10652469.2019.1684486
[10] Toft, J.; Bhimani, DG; Manna, R., Fractional Fourier transforms, harmonic oscillator propagators and Strichartz estimates on Pilipović and modulation spaces, Appl. Comput. Harmon. Anal., 67, 2023 · Zbl 1535.46049 · doi:10.1016/j.acha.2023.101580
[11] Zayed, A., Two-dimensional fractional Fourier transform and some of its properties, Integral Transforms Spec. Funct., 29, 7, 553-570, 2018 · Zbl 1393.42011 · doi:10.1080/10652469.2018.1471689
[12] Tao, R.; Li, YL; Wang, Y., Short-time fractional Fourier transform and its applications, IEEE Trans. Signal Process., 58, 5, 2568-2580, 2010 · Zbl 1392.94484 · doi:10.1109/TSP.2009.2028095
[13] Gao, W.; Li, B., Convolution theorem involving n-dimensional windowed fractional Fourier transform, Sci. China Inf. Sci., 64, 2021 · doi:10.1007/s11432-020-2909-5
[14] Atanasova, S.; Maksimović, S.; Pilipović, S., Abelian and Tauberian results for the fractional Fourier and short-time Fourier transforms of distributions, Integral Transforms Spec. Funct., 2023 · Zbl 1533.46038 · doi:10.1080/10652469.2023.2255367
[15] Candès, EJ, Harmonic Analysis of Neural Networks, Appl. Comput. Harmon. Anal., 6, 2, 197-218, 1999 · Zbl 0931.68104 · doi:10.1006/acha.1998.0248
[16] Grafakos, L.; Sansing, C., Gabor frames and directional time-frequency analysis, Appl. Comput. Harmon. Anal., 25, 1, 47-67, 2008 · Zbl 1258.42032 · doi:10.1016/j.acha.2007.09.004
[17] Giv, HH, Directional short-time Fourier transform, J. Math. Anal. Appl., 399, 1, 100-107, 2013 · Zbl 1256.42050 · doi:10.1016/j.jmaa.2012.09.053
[18] Saneva, K.; Atanasova, S., Directional short-time Fourier transform of distributions, J. Inequal. Appl., 124, 1-10, 2016 · Zbl 1335.42043 · doi:10.1186/s13660-016-1065-5
[19] Hörmander, L., The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, 1983, Berlin: Springer, Berlin · Zbl 0521.35001
[20] Schwartz, L., Théorie des Distributions, 1966, Paris: Hermann, Paris · Zbl 0149.09501
[21] Treves, F., Topological Vector Spaces, Distributions and Kernels, 1967, New York-London: Academic press, New York-London · Zbl 0171.10402
[22] Hertle, A., Continuity of the radon transform and its inverse on Euclidean space, Math. Z., 184, 165-192, 1983 · doi:10.1007/BF01252856
[23] Helgason, S., The Radon Transform, 1999, Boston: Birkhäuser Boston Inc, Boston · Zbl 0932.43011 · doi:10.1007/978-1-4757-1463-0
[24] Atanasova, S., Pilipović, S., Saneva, K.: Directional time-frequency analysis and directional regularity. Bull. Malays. Math. Sci. Soc. 42, 2075-2090 (2019). doi:10.1007/s40840-017-0594-5 · Zbl 1439.46031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.