×

Discontinuous solutions of \(U_t + H(U_x) = 0\) versus measure-valued solutions of \(u_t + [H(u)]_x = 0\). (English) Zbl 1483.35073

Summary: Let \(H\) be a bounded Lipschitz continuous function. We discuss some recent results concerning discontinuous viscosity solutions of the Hamilton-Jacobi equation \(U_t + H(U_x) = 0\), signed Radon measure-valued entropy solutions of the conservation law \(u_t + [H(u)]_x = 0\), and their connection.

MSC:

35F21 Hamilton-Jacobi equations
35D40 Viscosity solutions to PDEs
35L65 Hyperbolic conservation laws
28A33 Spaces of measures, convergence of measures
28A50 Integration and disintegration of measures
Full Text: DOI

References:

[1] C. Bardos -A. Y. Le Roux -J. C. Nedelec, First order quasilinear equations with boundary condition, Comm. Partial Di¤erential Equations 4 (1979), 1017-1034. · Zbl 0418.35024
[2] G. Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit, Nonlinear Anal. 20 (1993), 1123-1134. · Zbl 0816.35081
[3] G. Barles -B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, Math. Modelling Numer. Anal. 21 (1987), 557-579. · Zbl 0629.49017
[4] E. N. Barron -R. Jensen, Semicontinuous viscosity solutions of Hamilton-Jacobi equations with convex Hamiltonians, Comm. Partial Di¤erential Equations 15 (1990), 1713-1742. · Zbl 0732.35014
[5] M. Bertsch -F. Smarrazzo -A. Terracina -A. Tesei, A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30 (2019), 137-168. · Zbl 1428.35208
[6] M. Bertsch -F. Smarrazzo -A. Terracina -A. Tesei, Discontinuous viscosity solutions of first order Hamilton-Jacobi equations, J. Hyperbolic Di¤er. Equ., to appear. · Zbl 1443.35066
[7] M. Bertsch -F. Smarrazzo -A. Terracina -A. Tesei, Radon measure-valued solutions of first order hyperbolic conservation laws, Adv. in Nonlinear Anal. 9 (2020), 65-107. · Zbl 1435.35243
[8] M. Bertsch -F. Smarrazzo -A. Terracina -A. Tesei, Signed Radon measure-valued solutions of flux saturated scalar conservation laws, Discr. Cont. Dyn. Syst. A 40 (2020), 3143-3169. · Zbl 1439.37076
[9] M. Bertsch -F. Smarrazzo -A. Terracina -A. Tesei, Discontinuous solutions of Hamilton-Jacobi equations versus Radon measure-valued solutions of scalar conser-vation laws: Disappearance of singularities, J. Dynam. Di¤erential Equations (2021). https://doi.org/10.1007/s10884-021-09997-x · Zbl 1522.35151 · doi:10.1007/s10884-021-09997-x
[10] A.-P. Blanc, Comparison principle for the Cauchy problem for Hamilton-Jacobi equa-tions with discontinuous data, Nonlinear Anal. 45 (2001), 1015-1037. · Zbl 0995.49016
[11] H. Brezis -A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. 62 (1983), 73-97. · Zbl 0527.35043
[12] V. Caselles, Scalar conservation laws and Hamilton-Jacobi equations in one-space variable, Nonlinear Anal. 18 (1992), 461-469. · Zbl 0755.35067
[13] G.-Q. Chen -B. Su, On global discontinuous solutions of Hamilton-Jacobi equations, C. R. Math. Acad. Sci. Paris 334 (2002), 113-118. · Zbl 1002.35029
[14] G.-Q. Chen -B. Su, Discontinuous solutions of Hamilton-Jacobi equations: Existence, uniqueness and regularity. In: Hyperbolic Problems: Theory, Numerics, Applications, T. Y. Hou et al. (eds.), pp. 443-453 (Springer, 2003). · Zbl 1134.35313
[15] F. Demengel -D. Serre, Nonvanishing singular parts of measure-valued solutions of scalar hyperbolic equations, Comm. Partial Di¤erential Equations 16 (1991), 221-254. · Zbl 0733.35021
[16] F. Demengel -R. Temam, Convex function of a measure, Indiana Math. J. 33 (1984), 673-709. · Zbl 0581.46036
[17] L. C. Evans, Envelopes and nonconvex Hamilton-Jacobi equations, Calc. Var. & PDE 50 (2014), 257-282. · Zbl 1302.49038
[18] A. Friedman, Mathematics in Industrial Problems, Part 8, IMA Volumes in Mathe-matics and its Applications 83 (Springer, 1997). · Zbl 0868.00009
[19] Y. Giga -M.-H. Sato, A level set approach to semicontinuous viscosity solutions for Cauchy problems, Comm. Partial Di¤erential Equations 26 (2001), 813-839. · Zbl 1005.49025
[20] H. Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987), 368-384. · Zbl 0697.35030
[21] K. H. Karlsen -N. H. Risebro, A note on front tracking and the equivalence between viscosity solutions of Hamilton-Jacobi equations and entropy solutions of scalar conserva-tion laws, Nonlinear Anal. 50 (2002), 455-469. · Zbl 1010.35026
[22] P. L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Math. J. 52 (1985), 793-820. · Zbl 0599.35025
[23] T.-P. Liu -M. Pierre, Source-solutions and asymptotic behavior in conservation laws, J. Di¤erential Equations 51 (1984), 419-441. · Zbl 0545.35057
[24] D. S. Ross, Ion etching: An application of the mathematical theory of hyperbolic conser-vation laws, J. Electrochem. Soc. 135 (1988), 1235-1240.
[25] D. S. Ross, Two new moving boundary problems for scalar conservation laws, Comm. Pure Appl. Math 41 (1988), 725-737. · Zbl 0632.35078
[26] A. I. Subbotin, Generalized Solutions of First Order PDEs (Birkhäuser, 1995).
[27] A. Tesei, Radon measure-valued solutions of quasilinear parabolic equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 32 (2021), 213-231. · Zbl 1476.35124
[28] Alberto Tesei Dipartimento di Matematica ”G. Castelnuovo” Università Sapienza di Roma P. le A. Moro 5
[29] Roma, Italy and Istituto per le Applicazioni del Calcolo ”M. Picone” CNR Via dei Taurini 19
[30] Roma, Italy albertotesei@gmail.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.