×

Prescribed-time formation control for wheeled mobile robots with time-varying super-twisting extended state observer. (English) Zbl 07736213

Summary: This article studies the prescribed-time formation control for wheeled mobile robots within the leader-following consensus framework under directed topology. A time-varying prescribed-time super-twisting extended state observer is constructed for each robot to estimate the total disturbance of its dynamics. Different from the traditional active disturbance rejection control, the total disturbance is allowed to contain some nonsmooth component. Based on it, a formation control method with prescribed-time convergence is developed for the follower to realize the formation. The effectiveness of the proposed approach is demonstrated through two experiments.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93A16 Multi-agent systems
93B12 Variable structure systems
93B53 Observers
Full Text: DOI

References:

[1] Yuan, C.; He, H.; Wang, C., Cooperative deterministic learning-based formation control for a group of nonlinear uncertain mechanical systems, IEEE Trans. Ind. Inf., 15, 1, 319-333 (2019)
[2] Huang, Z.; Bauer, R.; Pan, Y., Event-triggered formation tracking control with application to multiple mobile robots, IEEE Trans. Ind. Electron., 70, 1, 846-854 (2023)
[3] Shojaei, K., Output-feedback formation control of wheeled mobile robots with actuators saturation compensation, Nonlinear Dyn., 89, 2867-2878 (2017) · Zbl 1377.93114
[4] Doi: 10.1002/asjc.2621
[5] Dinh, C. H., Event-triggered guaranteed cost control for uncertain neural networks systems with time delays, Circuit. Syst. Signal Process., 40, 4759-4778 (2021) · Zbl 1509.93043
[6] Han, J., From pid to active disturbance rejection control, IEEE Trans. Ind. Electron., 56, 3, 900-906 (2009)
[7] Li, L.; Kuang, C.; Xia, Y.; Qiang, J., Formation control of nonholonomic mobile robots with inaccurate global positions and velocities, Int. J. Robust Nonlinear Control, 32, 18, 9776-9790 (2022) · Zbl 1529.93079
[8] Qin, B.; Yan, H.; Zhang, H.; Wang, Y.; Yang, S. X., Enhanced reduced-order extended state observer for motion control of differential driven mobile robot, IEEE Trans. Cybern., 53, 2, 1299-1310 (2023)
[9] Cui, B.; Xia, Y.; Liu, K.; Wang, Y.; Zhai, D., Velocity-observer-based distributed finite-time attitude tracking control for multiple uncertain rigid spacecraft, IEEE Trans. Ind. Inf., 16, 4, 2509-2519 (2020)
[10] Nair, R. R.; Behera, L.; Kumar, S., Event-triggered finite-time integral sliding mode controller for consensus-based formation of multirobot systems with disturbances, IEEE Trans. Control Syst. Technol., 27, 1, 39-47 (2019)
[11] Hong, M.; Gu, X.; Liu, L.; Guo, Y., Finite time extended state observer based nonsingular fast terminal sliding mode control of flexible-joint manipulators with unknown disturbance, J. Franklin Inst., 360, 18-37 (2023) · Zbl 1506.93079
[12] Cheng, Y.; Jia, R.; Du, H.; Wen, G.; Zhu, W., Robust finite-time consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback, Int. J. Robust Nonlinear Control, 28, 2082-2096 (2018) · Zbl 1390.93025
[13] Doi: 10.1016/j.isatra.2023.02.016
[14] Fan, Y.; Qiu, B.; Liu, L.; Yang, Y., Global fixed-time trajectory tracking control of underactuated USV based on fixed-time extended state observer, ISA Trans., 132, 267-277 (2023)
[15] Wang, C.; Tnunay, H.; Zuo, Z.; Lennox, B.; Ding, Z., Fixed-time formation control of multirobot systems: design and experiments, IEEE Trans. Ind. Electron., 66, 8, 6292-6301 (2019)
[16] Shi, S.; Xu, S.; Feng, H., Robust fixed-time consensus tracking control of high-order multiple nonholonomic systems, IEEE Trans. Syst. Man Cybernet.: Syst., 51, 3, 1869-1880 (2021)
[17] Song, Y.; Wang, Y.; Holloway, J.; Krstic, M., Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time, Automatica, 83, 243-251 (2017) · Zbl 1373.93136
[18] Wang, Y.; Song, Y.; Hill, D. J.; Krstic, M., Prescribed-time consensus and containment control of networked multiagent systems, IEEE Trans. Cybern., 49, 4, 1138-1147 (2019)
[19] Ding, T.; Ge, M.; Xiong, C.; Liu, Z.; Ling, G., Prescribed-time formation tracking of second-order multi-agent networks with directed graphs, Automatica, 152, 110997 (2023) · Zbl 1519.93017
[20] Gong, W.; Li, B.; Ahn, C. K.; Yang, Y., Prescribed-time extended state observer and prescribed performance control of quadrotor UAVs against actuator faults, Aerosp. Sci. Technol., 138, 108322 (2023)
[21] Li, Z.; Zhao, Y.; Yan, H.; Wang, M.; Zeng, L., Prescribed-time zero-error active disturbance rejection control for uncertain wheeled mobile robots subject to skidding and slipping, Int. J. Syst. Sci., 54, 6, 1313-1329 (2023) · Zbl 1520.93471
[22] Krishnamurthy, P.; Khorrami, F.; Krstic, M., A dynamic high-gain design for prescribed-time regulation of nonlinear systems, Automatica, 115, 108860 (2020) · Zbl 1436.93124
[23] Muñoz Vázquez, A. J.; Sánchez-Torres, J. D.; Jiménez-Rodríguez, E.; Alexander, G. L., Predefined-time robust stabilization of robotic manipulators, IEEE/ASME Trans. Mechatron., 24, 3, 1033-1040 (2019)
[24] Levant, A., Higher-order sliding modes, differentiation and output-feedback control, Int. J. Control, 76, 9/10, 924-941 (2003) · Zbl 1049.93014
[25] Fei, J.; Feng, Z., Fractional-order finite-time super-twisting sliding mode control of micro gyroscope based on double-loop fuzzy neural network, IEEE Trans. Syst. Man Cybernet.: Syst., 51, 12, 7692-7706 (2021)
[26] Hua, Y.; Dong, X.; Han, L.; Li, Q.; Ren, Z., Finite-time-varying formation tracking for high-order multiagent systems with mismatched disturbances, IEEE Trans. Syst. Man Cybernet.: Syst., 50, 10, 3795-3803 (2020)
[27] Xia, G.; Zhang, Y.; Zhang, W.; Zhang, K.; Yang, H., Robust adaptive super-twisting sliding mode formation controller for homing of multi-underactuated AUV recovery system with uncertainties, ISA Trans., 130, 136-151 (2022)
[28] ochel, P.; Ríos, H.; Mera, M.; Dzul, A., Trajectory tracking for uncertain unicycle mobile robots: a super-twisting approach, Control Eng. Pract., 122, 105078 (2022)
[29] Zhao, L.; Li, Q.; Liu, B.; Cheng, H., Trajectory tracking control of a one degree of freedom manipulator based on a switched sliding mode controller with a novel extended state observer framework, IEEE Trans. Syst. Man Cybernet.: Syst., 49, 6, 1110-1118 (2019)
[30] Hou, Q.; Ding, S., Finite-time extended state observer-based super-twisting sliding mode controller for PMSM drives with inertia identification, IEEE Trans. Transp. Electrif., 8, 2, 1918-1929 (2022)
[31] Tran, X.; Oh, H., A modified generic second order algorithm with fixed-time stability, ISA Trans., 109, 72-80 (2021)
[32] Doi: 10.1080/00207179.2022.2098829
[33] Chen, M., Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping, IEEE Trans. Ind. Electron., 64, 4, 3359-3368 (2017)
[34] Jiang, W.; Wen, G.; Peng, Z.; Huang, T.; Rahmani, A., Fully distributed formation-containment control of heterogeneous linear multiagent systems, IEEE Trans. Automat. Contr., 64, 9, 3889-3896 (2019) · Zbl 1482.93042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.