×

Initial value problem for a class of semi-linear fractional iterative differential equations. (English) Zbl 07924342

Summary: An initial value problem of a class of semi-linear fractional order iterative differential equations is researched in this paper. The existence of solution is acquired in respect of Banach space \(C(I, I)\) and \(C_{K, q}(I, I)\) for fractional order iterative differential equations. Nevertheless, because the operator is Hölder continuous rather than Lipschitz continuous, uniqueness results can not be obtained. Additionally, a change of solution to \([k, \beta]\) for the \(k\in I\) will arise from a small perturbation of the initial value. Our analysis is on the basis of the properties of Mittag-Leffler function and Schauder’s fixed point theorem. Lastly, some examples are provided to demonstrate our results.

MSC:

26A33 Fractional derivatives and integrals
33E12 Mittag-Leffler functions and generalizations
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
Full Text: DOI

References:

[1] J. Alzabut, M. Khuddush, A. G. M. Selvam and D. Vignesh, Second order iterative dynamic boundary value problems with mixed derivative operators with applications, Qual. Theor. Dyn. Syst., 2023, 22(1), 1-32. · Zbl 1512.34153
[2] J. H. Barrett, Differential equations of non-integer order, Canad J. Math., 1954, 6, 529-541. · Zbl 0058.10702
[3] A. Bouakkaz, Positive periodic solutions for a class of first-order iterative dif-ferential equations with an application to a hematopoiesis model, Carpathian J. Math., 2022, 38(2), 347-355. · Zbl 1538.34268
[4] A. Buica, Existence and continuous dependence of solutions of some functional-differential equations, Semin. Fixed Point Theory, 1995, 3(1), 1-14.
[5] A. Chidouh, A. Guezane-Lakoud and R. Bebbouchi, Positive solutions of the fractional relaxation equation using lower and upper solutions, Vietnam J. Math., 2016, 44, 739-748. · Zbl 1358.34009
[6] F. Damag and A. Kilicman, Sufficient conditions on existence of solution for nonlinear fractional iterative integral equation, J. Nonlinear Sci. Appl., 2017, 10, 368-376. · Zbl 1412.39009
[7] J. H. Deng and J. R. Wang, Existence and approximation of solutions of frac-tional order iterative differential equations, Cent. Eur. J. of Phys., 2013, 11(10), 1377-1386.
[8] K. Diethelm and A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in: F. Keil, W. Mackens, H. Voss, J. Werther (Eds), Science Computing in Chemical Engi-neering II-Computational Fluid Dynamics, Reaction Engineering and Molecu-lar Properties, 217-224. Springer-Verlag, Heidelberg, 1999.
[9] A. Granas and J. Dugundji, Fixed Point Theory, Spring, New York, 2003. · Zbl 1025.47002
[10] A. Guerfi and A. Ardjouni, Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation, Cubo (Temuco), 2022, 24(1), 83-94. · Zbl 1485.34196
[11] A. A. Hamoud and K. P. Ghadle, Some new results on nonlinear fractional iterative Volterra-Fredholm integro differential equations, Twms J. Appl. Eng. Math., 2022, 12, 1283-1294.
[12] A. Hamoud, N. Mohammed and K. Ghadle, Existence and uniqueness results for Volterra-Fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 2020, 4(4), 361-372.
[13] A. A. Hamoud, N. M. Mohammed and K. P. Ghadle, Existence, uniqueness and stability results for nonlocal fractional nonlinear Volterra-Fredholm inte-gro differential equations, Discontinuity, Nonlinearity, and Complexity, 2022, 11(2), 343-352.
[14] J. W. He and Y. Zhou, Hölder regularity for non-autonomous fractional evolu-tion equations, Fract. Calc. Appl. Anal., 2022, 25(2), 924-961. · Zbl 1503.34038
[15] J. W. He, Y. Zhou, L. Peng and B. Ahmad, On well-posedness of semilin-ear Rayleigh-Stokes problem with fractional derivative on R N , Adv. Nonlinear Anal., 2022, 11(1), 580-597. · Zbl 1503.35163
[16] A. S. Hegazi, E. Ahmed and A. E. Matou, On chaos control and synchronization of the commensurate fractional order Liu system, Lect, Commun. Nonlinear Sci., 2013, 18(5), 1193-1202. · Zbl 1261.35148
[17] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Sin-gapore, 2000. · Zbl 0998.26002
[18] R. W. Ibrahim, Existence of deviating fractional differential equation, Cubo Math. J., 2012, 14(3), 129-142. · Zbl 1291.34015
[19] R. W. Ibrahim, Existence of iterative Cauchy fractional differential equation, J. Math., 2013. DOI: 10.1155/2013/838230. · Zbl 1268.34017 · doi:10.1155/2013/838230
[20] R. W. Ibrahim, A. Kilicman and F. H. Damag, Existence and uniqueness for a class of iterative fractional differential equations, Adv. Difference Equ., 2015, 1, 1-13. · Zbl 1351.34006
[21] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Else-vier, Amsterdam, 2006. · Zbl 1092.45003
[22] A. Kiliman and F. H. M. Damag, Some solution of the fractional iterative integro-differential equations, Malays. J. Math. Sci., 2018, 12(1), 121-141. · Zbl 07148985
[23] C. Li, R. Wu and R Ma, Existence of solutions for Caputo fractional iterative equations under several boundary value conditions, AIMS Math., 2023, 8(1), 317-339.
[24] F. Liu and K. Burrage, Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl., 2011, 62(3), 822-833. · Zbl 1228.93114
[25] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Soliton Fract., 1996, 7(9), 1461-1477. · Zbl 1080.26505
[26] B. Mansouri, A. Ardjouni and A. Djoudi, Periodicity and continuous depen-dence in iterative differential equations, Rend Circ. Mat. Palerm., 2019, 69(2), 1-16.
[27] R. Nigmatullin, T. Omay and D. Baleanu, On fractional filtering versus con-ventional filtering in economics, Commun. Nonlinear Sci. Numer. Simul., 2010, 15(4), 979-986. · Zbl 1221.91040
[28] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. · Zbl 0924.34008
[29] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 2011, 382(1), 426-447. · Zbl 1219.35367
[30] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Nonlinear Physical Science, Spring, Heidelberg, 2011.
[31] S. Unhaley and S. Kendre, On existence and uniqueness results for iterative fractional integro-differential equation with deviating arguments, Appl. Math. E-Notes, 2019, 19, 116-127. · Zbl 1440.45008
[32] J. R. Wang and J. H. Deng, Fractional order differential equations with itera-tions of linear modification of the argument, Adv. Difference Equ., 2013. DOI: 10.1186/1687-1847-2013-329. · Zbl 1391.34019 · doi:10.1186/1687-1847-2013-329
[33] J. R. Wang, M. Fečkan and Y. Zhou, Presentation of solutions of impulsive fractional Langevin equations and existence results, Eur. Phys. J.-Spec. Top., 2013, 222(8), 1857-1874.
[34] J. H. Wang, M. Feckan M and Y. Zhou, Fractional order iterative functional differential equations with parameter, Appl. Math. Model., 2013, 37(8), 6055-6067. · Zbl 1305.34134
[35] B. J. West, Colloquium: Fractional calculus view of complexity: A tutorial, Rev. Mod. Phys., 2014, 86(4), 1169-1184.
[36] D. Yang and W. Zhang, Solutions of equivariance for iterative differential equa-tions, Appl. Math. Lett., 2004, 17(7), 759-765. · Zbl 1068.34069
[37] S. Zhang and X. Su, The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reverse order, Comput. Math. Appl., 2011, 62(3), 1269-1274. · Zbl 1228.34022
[38] M. Zhou, Well-posedness of nonlinear fractional quadratic iterative differential equations, J. Anal., 2023, 31(2), 881-897. · Zbl 1510.34029
[39] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. · Zbl 1336.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.