×

Controlling the dynamics of a COVID-19 mathematical model using a parameter switching algorithm. (English) Zbl 1530.92218

MSC:

92D30 Epidemiology
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34H10 Chaos control for problems involving ordinary differential equations

Software:

GitHub
Full Text: DOI

References:

[1] StuartAM, HumphriesAR. Dynamical Systems and Computational Mathematics, Cambridge Monographs on Applied and Computational Mathematics: Cambridge University Press; 1998. · Zbl 0913.65068
[2] StuartAM. Dynamical Numerics for Numerical Dynamics, Numerical Analysis of Dynamical Systems. Cambridge University Press; 2008.
[3] GrüneL. Attraction rates, robustness, and discretization of attractors. SIAM J Numer Anal. 2003;41(6):2096‐2113. · Zbl 1058.65081
[4] HairerE, LubichC, WannerG. Geometric Numerical Integration; Structure‐Preserving Algorithms for Ordinary Differential Equations. 2nd ed., Springer Series in Computational Mathematics, vol. 31: Springer; 2006. · Zbl 1094.65125
[5] FoiasC, JollyMS. On the numerical algebraic approximation of global attractors. Nonlinearity. 1995;8:295‐319. · Zbl 0837.34052
[6] MayRM. Simple mathematical models with very complicated dynamics. Nature. 1976;261(5560):459‐467. · Zbl 1369.37088
[7] AndersonRM, MayRM. Helminth infections of humans: mathematical models, population dynamics, and control. Adv Parasitol. 1985;24:1‐101.
[8] BaudD, QiX, Nielsen‐SainesK, MussoD, PomarL, FavreG. Real estimates of mortality following COVID‐19 infection. Lancet Infect Dis. 2020;20(7):773.
[9] KooJR, CookAR, ParkM, et al. Interventions to mitigate early spread of SARS‐CoV‐2 in Singapore: a modelling study. Lancet Infect Dis. 2020;20(6):678‐688.
[10] Ud DinR, ShahK, AhmadI, AbdeljawadT. Study of transmission dynamics of novel COVID‐19 by using mathematical model. Adv Differ Equ. 2020;2020(1):323. · Zbl 1485.92162
[11] National Health Commission of the People’s Republic of China. Available at http://www.nhc.gov.cn/yjb/pzhgli/new_list.shtml. (Accessed 21 March 2020); 2020.
[12] Johns Hudson University. Available at https://github.com/CSSEGISandData/COVID_19/tree/master/csse_covid_19_data. (Accessed 21 March 2020); 2020.
[13] MangiarottiS, PeyreM, ZhangY, HucM, RogerF, KerrY. Chaos theory applied to the outbreak of COVID‐19: an ancillary approach to decision making in pandemic context. Epidemiol Infect. 2020;148:1‐29.
[14] DebboucheN, OuannasA, BatihaIM, GrassiG. Chaotic dynamics in a novel COVID‐19 pandemic model described by commensurate and incommensurate fractional‐order derivatives. Nonlinear Dyn. 2022;109:33‐45.
[15] BorahM, GayanA, SharmaJS, et al. Is fractional‐order chaos theory the new tool to model chaotic pandemics as Covid‐19?Nonlinear Dyn. 2022;109:1187‐1215.
[16] BorahM, RoyBK, KapitaniakT, et al. A revisit to the past plague epidemic (India) versus the present COVID‐19 pandemic: fractional‐order chaotic models and fuzzy logic control. Eur Phys J Spec Top. 2022;231:905‐919.
[17] TavazoeiMS, HaeriM. A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica. 2009;45(8):1886‐1890. · Zbl 1193.34006
[18] DancaMF, TangWKS, ChenG. A switching scheme for synthesizing attractors of dissipative chaotic systems. Appl Math Comput. 2008;201(1‐2):650‐667. · Zbl 1147.65104
[19] DancaMF. Random parameter‐switching synthesis of a class of hyperbolic attractors. CHAOS. 2008;18:033111. · Zbl 1309.93062
[20] DancaM‐F. Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo’s paradox. Commun Nonlinear Sci Numer Simul. 2013;18(3):500‐510. · Zbl 1331.37140
[21] DancaM‐F, Fec̆kanM. Note on a parameter switching method for nonlinear ODES. Math Slovaca. 2016;66:439‐448. · Zbl 1374.34039
[22] MaoY, TangWKS, DancaM‐F. An averaging model for chaotic system with periodic time‐varying parameter. Appl Math Comput. 2010;217(1):355‐362. · Zbl 1206.65255
[23] DancaMF, FeckanM, KuznetsovN, ChenG. Attractor as a convex combination of a set of attractors. Commun Nonlinear Sci Numer Simul. 2021;96:105721. · Zbl 1462.37093
[24] DancaM‐F, KuznetsovN. Parameter switching synchronization. Appl Math Comput. 2017;313:94‐102. · Zbl 1426.34076
[25] DancaM‐F, ChattopadhyayJ. Chaos control of Hastings-Powell model by combining chaotic motions. Chaos. 2016;26(4):043106. · Zbl 1361.34076
[26] DancaM‐F, Fec̆kanM, RomeraM. Generalized form of Parrondo’s paradoxical game with applications to chaos control. Int J Bifurcation Chaos. 2014;24(01):1450008. · Zbl 1284.37062
[27] TangWKS, DancaM‐F. Emulating “Chaos + Chaos = Order” in Chen’s circuit of fractional order by parameter switching. Int J Bifurcation Chaos. 2016;26:1650096.
[28] HarmerGP, AbbottD. Losing strategies can win by Parrondo’s paradox. Nature. 1999;402(6764):864. doi:10.1038/47220
[29] ShuJJ, WangQW. Beyond Parrondo’s paradox. Sci Rep. 2014;4:4244.
[30] CheongKH, TanZX, XieNG, JonesMC. A paradoxical evolutionary mechanism in stochastically switching environments. Sci Rep. 2016;6:34889.
[31] https://en.wikipedia.org/wiki/Parrondo’s_paradox#cite_note‐:0‐1.
[32] DancaM‐F, LaiD. Parrondo’s game model to find numerically the stable attractors of a tumor growth model. Int J Bifurcation Chaos. 2012;22(10):1250258. · Zbl 1258.34134
[33] SamuiP, MondalJ, KhajanchiS. A mathematical model for COVID‐19 transmission dynamics with a case study of India. Chaos Solitons Fractals. 2020;140:110173.
[34] MandalM, JanaS, NandiSK, KhatuaA, AdakS, KardTK. A model based study on the dynamics of COVID‐19: prediction and control. Chaos Solitons Fractals. 2020;136:109889.
[35] JeelaniBM, AlnahdiAS, AbdoMS, AbdulwasaMA, ShahK, WahashHA. Mathematical modeling and forecasting of COVID‐19 in Saudi Arabia under fractal‐fractional derivative in Caputo sense with power‐law. Axioms. 2021;10:228.
[36] AtanganaA. Modelling the spread of COVID‐19 with new fractal‐fractional operators: can the lockdown save mankind before vaccination?Chaos Solitons Fractals. 2020;136:109860.
[37] AlArjaniA, NasseefMT, KamalSM, Subba RaoBV, MahmudM, UddinMS. Application of mathematical modeling in prediction of COVID‐19 transmission dynamics. Arab J Sci Eng. 2022;47:10163‐10186. doi:10.1007/s13369‐021‐06419‐4
[38] KumariN, KumarS, SharmaS, SinghF. Basic reproduction number estimation and forecasting Of COVID‐19: a case study of India, Brazil and Peru. Commun Pure Appl Anal. 2023;22(2):417‐440. doi:10.3934/cpaa.2021170 · Zbl 1512.92108
[39] WangS, TangW, XiongL, et al. Mathematical modeling of transmission dynamics of COVID‐19. Big Data Inf Anal. 2021;6:12‐25. doi:10.3934/bdia.2021002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.