×

Littlewood-Paley-Rubio de Francia inequality for multi-parameter Vilenkin systems. (English) Zbl 07820034

Summary: A version of Littlewood-Paley-Rubio de Francia inequality for bounded multi-parameter Vilenkin systems is proved: For any family of disjoint sets \(I_k = I_k^1 \times \cdots \times I_k^D \subseteq\mathbb{Z}_+^D\) such that \(I_k^d\) are intervals in \(\mathbb{Z}_+\) and a family of functions \(f_k\) with Vilenkin-Fourier spectrum inside \(I_k\) the following holds: \[ \left\Vert \sum\nolimits_k f_k \right\Vert_{L^p} \leq C \left\Vert \sum\nolimits_k |f_k|^{2^{1/2}} \right\Vert_{L^p}, \qquad 1 < p \leq 2, \] where \(C\) does not depend on the choice of rectangles \(\left\{ I_k \right\}\) or functions \(\left\{ f_k \right\}\). This result belongs to the line of studying of (multi-parameter) generalizations of Rubio de Francia inequality to locally compact abelian groups. The arguments are mainly based on the atomic theory of multi-parameter martingale Hardy spaces and, as a byproduct, yield an easy-to-use multi-parameter version of Gundy’s theorem on the boundedness of operators taking martingales to measurable functions. Additionally, some extensions and corollaries of the main result are obtained, including a weaker version of the inequality for exponents \(0 < p \leq 1\) and an example of a one-parameter inequality for an exotic notion of interval.
© 2023 Wiley-VCH GmbH.

MSC:

26-XX Real functions
42-XX Harmonic analysis on Euclidean spaces

Software:

MathOverflow

References:

[1] J. L.Rubio de Francia, A Littlewood-Paley inequality for arbitrary intervals, Rev. Mat. Iberoam.1 (1985), no. 2, 1-14. · Zbl 0611.42005
[2] C.Watari, On generalized Walsh Fourier series, Tohoku Math. J. (2)10 (1958), no. 3, 211-241. · Zbl 0085.05803
[3] J.Bourgain, On square functions on the trigonometric system, Bull. Soc. Math. Belg. Sér. B37 (1985), no. 1, 20-26. · Zbl 0613.42015
[4] S. V.Kislyakov and D. V.Parilov, On the Littlewood‐Paley theorem for arbitrary intervals, J. Math. Sci.139 (2006), no. 2, 6417-6424.
[5] J.‐L.Journé, Calderón‐Zygmund operators on product spaces, Rev. Mat. Iberoam.1 (1985), no. 3, 55-91. · Zbl 0634.42015
[6] F.Soria, A note on a Littlewood-Paley inequality for arbitrary intervals in \(\mathbb{R}^2\), J. Lond. Math. Soc.2 (1987), no. 1, 137-142. · Zbl 0592.42012
[7] N. N.Osipov, Littlewood-Paley inequality for arbitrary rectangles in \(\mathbb{R}^2\) for \(0 < p \le 2\), St. Petersburg Math. J.22 (2011), no. 2, 293-306. · Zbl 1219.42011
[8] N. N.Osipov, One‐sided Littlewood-Paley inequality in \(\mathbb{R}^n\) for \(0 < p \le 2\), J. Math. Sci.172 (2011), no. 2, 229-242. · Zbl 1223.42013
[9] S. V.Kislyakov, Littlewood-Paley theorem for arbitrary intervals: weighted estimates, J. Math. Sci.156 (2009), no. 5. · Zbl 1178.42004
[10] V.Borovitskiy, Weighted Littlewood-Paley inequality for arbitrary rectangles in \(\mathbb{R}^2\), St. Petersburg Math. J.32 (2021), no. 6, 975-997. · Zbl 1482.42043
[11] E.Malinnikova and N. N.Osipov, Two types of Rubio de Francia operators on Triebel-Lizorkin and Besov spaces, J. Fourier Anal. Appl.25 (2019), no. 3, 804-818. · Zbl 1415.42020
[12] K.‐P.Ho, Singular integrals and sublinear operators on amalgam spaces and hardy‐amalgam spaces, Math. Scand.127 (2021), no. 3. · Zbl 1497.42031
[13] K.‐P.Ho, Boundedness of operators and inequalities on morrey-banach spaces, Publ. Res. Inst. Math. Sci.58 (2022), no. 3, 551-577. · Zbl 1502.42011
[14] M. T.Lacey, Issues related to Rubio de Francia’s Littlewood‐Paley inequality, New York Journal of Mathematics. NYJM Monographs, vol. 2, State University of New York, University at Albany, Albany, NY, 2007. · Zbl 1142.42007
[15] N. N.Osipov, Littlewood-Paley-Rubio de Francia inequality for the Walsh system, St. Petersburg Math. J.28 (2017), no. 5, 719-726. · Zbl 1371.42036
[16] A. S.Tselishchev, A Littlewood-Paley-Rubio de Francia inequality for bounded Vilenkin systems, Sb. Math.212 (2021), no. 10, 1491-1502. · Zbl 1484.42028
[17] V.Borovitskiy, Littlewood-Paley-Rubio de Francia inequality for the two‐parameter Walsh system, J. Math. Sci.261 (2022), 746-756. · Zbl 1491.42042
[18] R.Fefferman, Calderón‐Zygmund theory for product domains: \({H}^p\) spaces, Proc. Natl. Acad. Sci.83 (1986), no. 4, 840-843. · Zbl 0602.42023
[19] W. S.Young, Mean convergence of generalized Walsh‐Fourier series, Trans. Am. Math. Soc.218 (1976), 311-320. · Zbl 0327.43009
[20] A.Tselishchev, Littlewood-Paley-Rubio de francia inequality for arbitrary Vilenkin systems, arXiv preprint arXiv:2207.05035 (2022)
[21] F.Weisz, Summability of multi‐dimensional Fourier series and Hardy Spaces, vol. 541, Springer, Dordrecht, 2013.
[22] N.Vilenkin, On a class of complete orthonormal systems, Izv. Ross. Akad. Nauk Ser. Mat.11 (1947), no. 4, 363-400. · Zbl 0036.35601
[23] J. L.Walsh, A closed set of normal orthogonal functions, Am. J. Math.45 (1923), no. 1, 5-24. · JFM 49.0293.03
[24] F.Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Springer, Dordrecht, 2006.
[25] F.Weisz, Cesàro summability of two‐parameter Walsh-Fourier series, J. Approx. Theory88 (1997), no. 2, 168-192. · Zbl 0873.42017
[26] F.Weisz, Summation of Fourier series, Acta Math. Acad. Paedagog. Nyházi. (N.S.)20 (2004), 239-266. · Zbl 1063.42016
[27] J.Pipher, Journé’s covering lemma and its extension to higher dimensions, Duke Math. J.53 (1986), no. 3, 683-690. · Zbl 0645.42018
[28] R. F.Gundy, A decomposition for \(l^1\)‐bounded martingales, Ann. Math. Stat.39 (1968), no. 1, 134-138. · Zbl 0185.45102
[29] R. F.Gundy, Inégalités pour martingales à un et deux indices: L’espace \({H}^p\), In: Hennequin, P. L. (ed.) (Ed.) Ecole d’Eté de Probabilités de Saint‐Flour VIII‐1978, Springer, Dordrecht, 1980, pp. 251-334. · Zbl 0427.60046
[30] S. V.Kislyakov, Martingale transforms and uniformly convergent orthogonal series, J. Sov. Math.37 (1987), no. 5, 1276-1287. · Zbl 0615.60042
[31] T.Tao, MathOverflow answer to “A generalization of Rubio de Francia”s inequality,”MathOverflow (2021). https://mathoverflow.net/a/400694
[32] A.Osekowski, Sharp martingale and semimartingale inequalities, vol. 72, Springer, Dordrecht, 2012. · Zbl 1278.60005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.