×

Generalized Bakry-Émery curvature condition and equivalent entropic inequalities in groups. (English) Zbl 07493867

Summary: We study a generalization of the Bakry-Émery pointwise gradient estimate for the heat semigroup and its equivalence with some entropic inequalities along the heat flow and Wasserstein geodesics for metric-measure spaces with a suitable group structure. Our main result applies to Carnot groups of any step and to the \(\mathbb{SU}(2)\) group.

MSC:

47D07 Markov semigroups and applications to diffusion processes
28D20 Entropy and other invariants
53C17 Sub-Riemannian geometry

References:

[1] Agrachev, A.; Lee, P., Optimal transportation under nonholonomic constraints, Trans. Am. Math. Soc., 361, 11, 6019-6047 (2009) · Zbl 1175.49037
[2] Agrachev, A.; Lee, P., Generalized Ricci curvature bounds for three dimensional contact sub Riemannian manifolds, Math. Ann., 360, 1-2, 209-253 (2014) · Zbl 1327.53032
[3] Agrachev, A.; Zelenko, I., Geometry of Jacobi curves. I, J. Dyn. Control Syst., 8, 1, 93-140 (2002) · Zbl 1019.53038
[4] Agrachev, A.; Zelenko, I., Geometry of Jacobi curves. II, J. Dyn. Control Syst., 8, 2, 167-215 (2002) · Zbl 1045.53051
[5] Agrachev, A.; Barilari, D.; Rizzi, L., Sub-Riemannian curvature in contact geometry, J. Geom. Anal., 27, 1, 366-408 (2017) · Zbl 1376.53059
[6] Agrachev, A.; Barilari, D.; Rizzi, L., Curvature: a variational approach, Mem. Am. Math. Soc., 256, 1225, v+42 (2018) · Zbl 1409.49001
[7] Agrachev, A.; Barilari, D.; Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics (2020), Cambridge: Cambridge University Press, Cambridge · Zbl 1487.53001
[8] Ambrosio, L., Gigli, N.: A user’s guide to optimal transport, Modelling and optimisation of flows on networks. Lecture Notes in Math., vol. 2062, Springer, Heidelberg, pp. 1-155, (2013)
[9] Ambrosio, L.; Rigot, S., Optimal mass transportation in the Heisenberg group, J. Funct. Anal., 208, 2, 261-301 (2004) · Zbl 1076.49023
[10] Ambrosio, L.; Stefani, G., Heat and entropy flows in Carnot groups, Rev. Mat. Iberoam., 36, 1, 257-290 (2020) · Zbl 1439.53032
[11] Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, (2008) · Zbl 1145.35001
[12] Ambrosio, L.; Savaré, G.; Zambotti, L., Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Related Fields, 145, 3-4, 517-564 (2009) · Zbl 1235.60105
[13] Ambrosio, L.; Gigli, N.; Savaré, G., Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., 29, 3, 969-996 (2013) · Zbl 1287.46027
[14] Ambrosio, L.; Gigli, N.; Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195, 2, 289-391 (2014) · Zbl 1312.53056
[15] Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 7, 1405-1490 (2014) · Zbl 1304.35310
[16] Ambrosio, L., Colombo, M., Di Marino, S.: Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope, Variational methods for evolving objects, Adv. Stud. Pure Math., vol.67, Math. Soc. Japan, Tokyo, 1-58, (2015) · Zbl 1370.46018
[17] Ambrosio, L.; Gigli, N.; Mondino, A.; Rajala, T., Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure, Trans. Am. Math. Soc., 367, 7, 4661-4701 (2015) · Zbl 1317.53060
[18] Ambrosio, L.; Gigli, N.; Savaré, G., Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43, 1, 339-404 (2015) · Zbl 1307.49044
[19] Ambrosio, L.; Ghezzi, R.; Magnani, V., BV functions and sets of finite perimeter in sub-Riemannian manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32, 3, 489-517 (2015) · Zbl 1320.53034
[20] Ambrosio, L.; Mondino, A.; Savaré, G., Nonlinear diffusion equations and curvature conditions in metric measure spaces, Mem. Am. Math. Soc., 262, 1270 (2019) · Zbl 1477.49003
[21] Badreddine, Z., Mass transportation on sub-Riemannian structures of rank two in dimension four, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36, 3, 837-860 (2019) · Zbl 1429.49046
[22] Bakry, D., Émery, M.: Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, (1985), pp. 177-206 · Zbl 0561.60080
[23] Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory, (Saint-Flour, 1992), Lecture Notes in Math., vol. 1581. Springer, Berlin, pp. 1-114 (French) (1994) · Zbl 0856.47026
[24] Bakry, D.: Functional inequalities for Markov semigroups, Probability measures on groups: recent directions and trends, pp. 91-147. Mumbai, Tata Inst. Fund. Res. (2006) · Zbl 1148.60057
[25] Bakry, D.; Ledoux, M., A logarithmic Sobolev form of the Li-Yau parabolic inequality, Rev. Mat. Iberoam., 22, 2, 683-702 (2006) · Zbl 1116.58024
[26] Bakry, D.; Baudoin, F.; Michel, C.; Djalil, On gradient bounds for the heat kernel on the Heisenberg group, J. Funct. Anal., 255, 8, 1905-1938 (2008) · Zbl 1156.58009
[27] Bakry, D.; Gentil, I.; Ledoux, M., Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2014), Cham: Springer, Cham · Zbl 1376.60002
[28] Bakry, D.; Gentil, I.; Ledoux, M., On Harnack inequalities and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14, 3, 705-727 (2015) · Zbl 1331.35151
[29] Balogh, ZM; Kristály, A.; Sipos, K., Geometric inequalities on Heisenberg groups, Calc. Var. Partial Differ. Equ., 57, 2, 41 (2018) · Zbl 1396.49045
[30] Balogh, ZM; Kristály, A.; Sipos, K., Jacobian determinant inequality on Corank 1 Carnot groups with applications, J. Funct. Anal., 277, 12, 108293 (2019) · Zbl 1427.53038
[31] Barilari, D.; Ivanov, S., A Bonnet-Myers type theorem for quaternionic contact structures, Calc. Var. Partial Differ. Equ., 58, 26 (2019) · Zbl 1422.53035
[32] Barilari, D.; Rizzi, L., Comparison theorems for conjugate points in sub-Riemannian geometry, ESAIM Control Optim. Calc. Var., 22, 2, 439-472 (2016) · Zbl 1344.53023
[33] Barilari, D.; Rizzi, L., On Jacobi fields and a canonical connection in sub-Riemannian geometry, Arch. Math. (Brno), 53, 2, 77-92 (2017) · Zbl 1424.53072
[34] Barilari, D.; Rizzi, L., Sharp measure contraction property for generalized H-type Carnot groups, Commun. Contemp. Math., 20, 1750081 (2018) · Zbl 1398.53038
[35] Barilari, D.; Rizzi, L., Sub-Riemannian interpolation inequalities, Invent. Math., 215, 3, 977-1038 (2019) · Zbl 1412.53051
[36] Barilari, D.; Rizzi, L., Bakry-Émery curvature and model spaces in sub-Riemannian geometry, Math. Ann., 377, 1-2, 435-482 (2020) · Zbl 1443.53016
[37] Baudoin, F., Bakry-Émery meet Villani, J. Funct. Anal., 273, 7, 2275-2291 (2017) · Zbl 1373.35061
[38] Baudoin, F.; Bonnefont, M., The subelliptic heat kernel on \({\rm SU}(2)\): representations, asymptotics and gradient bounds, Math. Z., 263, 3, 647-672 (2009) · Zbl 1189.58009
[39] Baudoin, F.; Bonnefont, M., Curvature-dimension estimates for the Laplace-Beltrami operator of a totally geodesic foliation, Nonlinear Anal., 126, 159-169 (2015) · Zbl 1329.58017
[40] Baudoin, F.; Bonnefont, M., Reverse Poincaré inequalities, isoperimetry, and Riesz transforms in Carnot groups, Nonlinear Anal., 131, 48-59 (2016) · Zbl 1330.35009
[41] Baudoin, F.; Cecil, M., The subelliptic heat kernel on the three-dimensional solvable Lie groups, Forum Math., 27, 4, 2051-2086 (2015) · Zbl 1330.58018
[42] Baudoin, F.; Garofalo, N., Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, J. Eur. Math. Soc. (JEMS), 19, 1, 151-219 (2017) · Zbl 1359.53018
[43] Baudoin, F.; Kelleher, DJ, Differential one-forms on Dirichlet spaces and Bakry-Émery estimates on metric graphs, Trans. Am. Math. Soc., 371, 5, 3145-3178 (2019) · Zbl 1417.31010
[44] Baudoin, F.; Kim, B., Sobolev, Poincaré, and isoperimetric inequalities for subelliptic diffusion operators satisfying a generalized curvature dimension inequality, Rev. Mat. Iberoam., 30, 1, 109-131 (2014) · Zbl 1287.53026
[45] Baudoin, F.; Wang, J., Curvature dimension inequalities and subelliptic heat kernel gradient bounds on contact manifolds, Potential Anal., 40, 2, 163-193 (2014) · Zbl 1321.53034
[46] Baudoin, F.; Bonnefont, M.; Garofalo, N., A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality, Math. Ann., 358, 3-4, 833-860 (2014) · Zbl 1287.53025
[47] Baudoin, F.; Bonnefont, M.; Garofalo, N.; Munive, IH, Volume and distance comparison theorems for sub-Riemannian manifolds, J. Funct. Anal., 267, 7, 2005-2027 (2014) · Zbl 1303.53042
[48] Bejancu, A., Curvature in sub-Riemannian geometry, J. Math. Phys., 53, 2, 023513 (2012) · Zbl 1274.53058
[49] Bejancu, A.; Farran, HR, Curvature of \(CR\) manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 59, 1, 43-72 (2013) · Zbl 1324.32014
[50] Berestovskii, VN, Curvatures of homogeneous sub-Riemannian manifolds, Eur. J. Math., 3, 4, 788-807 (2017) · Zbl 1383.53025
[51] Biroli, M.; Mosco, U., A Saint-Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl. (4), 169, 125-181 (1995) · Zbl 0851.31008
[52] Bogachev, VI, Measure Theory (2007), Berlin: Springer, Berlin · Zbl 1120.28001
[53] Bolley, F.; Gentil, I.; Guillin, A., Dimensional contraction via Markov transportation distance, J. Lond. Math. Soc. (2), 90, 1, 309-332 (2014) · Zbl 1312.47055
[54] Bolley, F.; Gentil, I.; Guillin, A.; Kuwada, K., Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition, Ann. Sci. Norm. Super. Pisa Cl. Sci., 18, 3 (2018) · Zbl 1406.58020
[55] Bonfiglioli, A.; Lanconelli, E.; Uguzzoni, F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer Monographs in Mathematics (2007), Berlin: Springer, Berlin · Zbl 1128.43001
[56] Bouleau, N.; Hirsch, F., Dirichlet Forms and Analysis on Wiener Space, De Gruyter Studies in Mathematics (1991), Berlin: Walter de Gruyter & Co., Berlin · Zbl 0748.60046
[57] Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, (French). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50) (1973) · Zbl 0252.47055
[58] Brézis, H.: Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, (2011) · Zbl 1220.46002
[59] Carlen, EA; Kusuoka, S.; Stroock, DW, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Stat., 23, 245-287 (1987) · Zbl 0634.60066
[60] Cavalletti, F.; Mondino, A., Measure rigidity of Ricci curvature lower bounds, Adv. Math., 286, 430-480 (2016) · Zbl 1327.53050
[61] Cavalletti, F.; Mondino, A., Optimal maps in essentially non-branching spaces, Commun. Contemp. Math., 19, 6, 1750007 (2017) · Zbl 1376.53064
[62] Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 3, 428-517 (1999) · Zbl 0942.58018
[63] Cheng, L-J; Thalmaier, A.; Zhang, S-Q, Exponential contraction in Wasserstein distance on static and evolving manifolds, Rev. Roumaine Math. Pures Appl., 66, 1, 107-129 (2021) · Zbl 1524.60174
[64] Cordero-Erausquin, D.; McCann, RJ; Schmuckenschläger, M., A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., 146, 2, 219-257 (2001) · Zbl 1026.58018
[65] Coulhon, T.; Jiang, R.; Koskela, P.; Sikora, A., Gradient estimates for heat kernels and harmonic functions, J. Funct. Anal., 278, 8, 108398 (2020) · Zbl 1439.53041
[66] Cowling, M.; Sikora, A., A spectral multiplier theorem for a sublaplacian on \({{\rm SU}}(2)\), Math. Z., 238, 1, 1-36 (2001) · Zbl 0996.42006
[67] Daneri, S.; Savaré, G., Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40, 3, 1104-1122 (2008) · Zbl 1166.58011
[68] Le Donne, E.: A primer on Carnot groups: Homogenous groups, Carnot-Carathéodory spaces, and regularity of their isometries. Anal. Geom. Metr. Spaces 5, 116-137 (2017) · Zbl 1392.53053
[69] Le Donne, E. Lučić, D., Pasqualetto, E.: Universal infinitesimal Hilbertianity property of sub-Riemannian manifolds. arxiv:1910.05962 (2019)
[70] Driver, BK; Melcher, T., Hypoelliptic heat kernel inequalities on the Heisenberg group, J. Funct. Anal., 221, 2, 340-365 (2005) · Zbl 1071.22005
[71] Durrett, R., Probability: Theory and Examples, Cambridge Series in Statistical and Probabilistic Mathematics (2019), Cambridge: Cambridge University Press, Cambridge · Zbl 1440.60001
[72] Erbar, M., The heat equation on manifolds as a gradient flow in the Wasserstein space, Ann. Inst. Henri Poincaré Probab. Stat., 46, 1, 1-23 (2010) · Zbl 1215.35016
[73] Erbar, M.; Kuwada, K.; Sturm, KT, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., 201, 3, 993-1071 (2015) · Zbl 1329.53059
[74] Federer, H., Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften (1969), New York: Springer, New York · Zbl 0176.00801
[75] Feng, Q., Li, W.: Generalized Gamma \(z\) calculus via sub-Riemannian density manifold. (2019) arxiv:1910.07480
[76] Feng, Q., Li, W.: Sub-Riemannian Ricci curvature via generalized Gamma \(z\) calculus. (2020) arxiv:2004.01863
[77] Figalli, A.; Juillet, N., Absolute continuity of Wasserstein geodesics in the Heisenberg group, J. Funct. Anal., 255, 1, 133-141 (2008) · Zbl 1246.53049
[78] Figalli, A.; Rifford, L., Mass transportation on sub-Riemannian manifolds, Geom. Funct. Anal., 20, 1, 124-159 (2010) · Zbl 1201.49048
[79] Folland, GB, Real Analysis. Modern Techniques and Their Applications Pure and Applied Mathematics (1999), New York: Wiley, New York · Zbl 0924.28001
[80] Folland, GB, A Course in Abstract Harmonic Analysis, Textbooks in Mathematics (2016), Boca Raton: CRC Press, Boca Raton · Zbl 1342.43001
[81] Gentil, I., Dimensional contraction in Wasserstein distance for diffusion semigroups on a Riemannian manifold, Potential Anal., 42, 4, 861-873 (2015) · Zbl 1390.58021
[82] Gigli, N., On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calc. Var. Partial Differ. Equ., 39, 1-2, 101-120 (2010) · Zbl 1200.35178
[83] Gigli, N., An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature, Anal. Geom. Metr. Spaces, 2, 1, 169-213 (2014) · Zbl 1310.53031
[84] Gigli, N., On the differential structure of metric measure spaces and applications, Mem. Am. Math. Soc., 236, 1113, vi+91 (2015) · Zbl 1325.53054
[85] Gigli, N.; Mantegazza, C., A flow tangent to the Ricci flow via heat kernels and mass transport, Adv. Math., 250, 74-104 (2014) · Zbl 1288.53059
[86] Gigli, N.; Kuwada, K.; Ohta, S-I, Heat flow on Alexandrov spaces, Commun. Pure Appl. Math., 66, 3, 307-331 (2013) · Zbl 1267.58014
[87] Grong, E.: Affine connections and curvature in sub-Riemannian Geometry. (2020) arxiv:2001.03817
[88] Grong, E., Model spaces in sub-Riemannian geometry, Commun. Anal. Geom., 29, 1, 77-113 (2021) · Zbl 1470.53031
[89] Grong, E.; Thalmaier, A., Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part I, Math. Z., 282, 1-2, 99-130 (2016) · Zbl 1361.53028
[90] Grong, E.; Thalmaier, A., Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part II, Math. Z., 282, 1-2, 131-164 (2016) · Zbl 1361.53029
[91] Grong, E.; Thalmaier, A., Stochastic completeness and gradient representations for sub-Riemannian manifolds, Potential Anal., 51, 2, 219-254 (2019) · Zbl 1481.60156
[92] Heinonen, J.; Koskela, P.; Shanmugalingam, N.; Tyson, JT, Sobolev Spaces on Metric Measure Spaces. An Approach Based on Upper Gradients, New Mathematical Monographs (2015), Cambridge: Cambridge University Press, Cambridge · Zbl 1332.46001
[93] Hille, E., Phillips, R. S.: Functional Analysis and Semi-Groups, American Mathematical Society, Providence, R. I. Third printing of the revised edition of 1957; American Mathematical Society Colloquium Publications, vol. XXXI. (1974) · Zbl 0078.10004
[94] Hladky, RK, Connections and curvature in sub-Riemannian geometry, Houston J. Math., 38, 4, 1107-1134 (2012) · Zbl 1264.53040
[95] Hu, J-Q; Li, H-Q, Gradient estimates for the heat semigroup on H-type groups, Potential Anal., 33, 4, 355-386 (2010) · Zbl 1206.35241
[96] Huang, Y.; Sun, S., Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds, Front. Math. China, 15, 1, 91-114 (2020) · Zbl 1440.53036
[97] Jordan, R.; Kinderlehrer, D.; Otto, F., The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29, 1, 1-17 (1998) · Zbl 0915.35120
[98] Juillet, N., Geometric inequalities and generalized Ricci bounds in the Heisenberg group, Int. Math. Res. Not. IMRN, 13, 2347-2373 (2009) · Zbl 1176.53053
[99] Juillet, N., Diffusion by optimal transport in Heisenberg groups, Calc. Var. Partial Differ. Equ., 50, 3-4, 693-721 (2014) · Zbl 1378.53044
[100] Juillet, N., Sub-Riemannian structures do not satisfy Riemannian Brunn-Minkowski inequalities, Rev. Mat. Iberoam., 37, 1, 177-188 (2021) · Zbl 1461.53020
[101] Khesin, B.; Lee, P., A nonholonomic Moser theorem and optimal transport, J. Symplectic Geom., 7, 4, 381-414 (2009) · Zbl 1247.58005
[102] Kuwada, K., Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258, 11, 3758-3774 (2010) · Zbl 1194.53032
[103] Kuwada, K.: Gradient estimate for Markov kernels, Wasserstein control and Hopf-Lax formula, Potential theory and its related fields, RIMS Kôkyûroku Bessatsu, B43, Res. Inst. Math. Sci. (RIMS), Kyoto, 61-80 (2013) · Zbl 1305.60010
[104] Kuwada, K., Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates, Calc. Var. Partial Differ. Equ., 54, 1, 127-161 (2015) · Zbl 1386.60273
[105] Lee, P.; Li, C.; Zelenko, I., Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds, Discrete Contin. Dyn. Syst., 36, 1, 303-321 (2016) · Zbl 1326.53043
[106] Li, H-Q, Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg, J. Funct. Anal., 236, 2, 369-394 (2006) · Zbl 1106.22009
[107] Lisini, S., Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differ. Equ., 28, 1, 85-120 (2007) · Zbl 1132.60004
[108] Lott, J.; Villani, C., Weak curvature conditions and functional inequalities, J. Funct. Anal., 245, 1, 311-333 (2007) · Zbl 1119.53028
[109] Lott, J.; Villani, C., Ricci curvature for metric-measure spaces via optimal transport, Ann. Math. (2), 169, 3, 903-991 (2009) · Zbl 1178.53038
[110] Lučić, D.; Pasqualetto, E., Infinitesimal Hilbertianity of weighted Riemannian manifolds, Can. Math. Bull., 63, 1, 118-140 (2020) · Zbl 1433.53070
[111] Melcher, T., Hypoelliptic heat kernel inequalities on Lie groups, Stochastic Process. Appl., 118, 3, 368-388 (2008) · Zbl 1138.22008
[112] Mietton, T., Rizzi, L.: Branching geodesics in sub-Riemannian geometry. Geom. Funct. Anal. (2020) · Zbl 1459.53044
[113] Milman, E.: The quasi curvature-dimension condition with applications to sub-Riemannian manifolds. Commun. Pure Appl. Math. (2019) arxiv:1908.01513
[114] Mitchell, J., On Carnot-Carathéodory metrics, J. Differ. Geom., 21, 1, 35-45 (1985) · Zbl 0554.53023
[115] Montgomery, R., A Tour of Sub-Riemannian Geometries, Their Geodesics and Applications. Mathematical Surveys and Monographs (2002), Providence: American Mathematical Society, Providence · Zbl 1044.53022
[116] Munive, IH, Sub-Riemannian curvature of Carnot groups with rank-two distributions, J. Dyn. Control Syst., 23, 4, 779-814 (2017) · Zbl 1381.53056
[117] Ohta, S-I, On the measure contraction property of metric measure spaces, Comment. Math. Helv., 82, 4, 805-828 (2007) · Zbl 1176.28016
[118] Ohta, S-I, \((K, N)\)-convexity and the curvature-dimension condition for negative \(N\), J. Geom. Anal., 26, 3, 2067-2096 (2016) · Zbl 1347.53034
[119] Ohta, S-I; Sturm, K-T, Heat flow on Finsler manifolds, Commun. Pure Appl. Math., 62, 10, 1386-1433 (2009) · Zbl 1176.58012
[120] Ohta, S-I; Sturm, K-T, Bochner-Weitzenböck formula and Li-Yau estimates on Finsler manifolds, Adv. Math., 252, 429-448 (2014) · Zbl 1321.53089
[121] Otto, F., The geometry of dissipative evolution equations: The porous medium equation, Commun. Partial Differ. Equ., 26, 1-2, 101-174 (2001) · Zbl 0984.35089
[122] Otto, F.; Villani, C., Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173, 2, 361-400 (2000) · Zbl 0985.58019
[123] Otto, F.; Westdickenberg, M., Eulerian calculus for the contraction in the Wasserstein distance, SIAM J. Math. Anal., 37, 4, 1227-1255 (2005) · Zbl 1094.58016
[124] De Pascale, L., Rigot, S.: Monge’s transport problem in the Heisenberg group. Adv. Calc. Var. 4(2), 195-227 (2011) · Zbl 1216.49039
[125] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences (1983), New York: Springer, New York · Zbl 0516.47023
[126] Rajala, T., Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differ. Equ., 44, 3-4, 477-494 (2012) · Zbl 1250.53040
[127] Rigot, S., Mass transportation in groups of type \(H\), Commun. Contemp. Math., 7, 4, 509-537 (2005) · Zbl 1089.49041
[128] Rizzi, L., Measure contraction properties of Carnot groups, Calc. Var. Partial Differ. Equ., 55, 20 (2016) · Zbl 1352.53026
[129] Rizzi, L.; Silveira, P., Sub-Riemannian Ricci curvatures and universal diameter bounds for 3-Sasakian manifolds, J. Inst. Math. Jussieu, 18, 4, 783-827 (2019) · Zbl 1478.53062
[130] Savaré, G., Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in \({\rm RCD}(K,\infty )\) metric measure spaces, Discrete Contin. Dyn. Syst., 34, 4, 1641-1661 (2014) · Zbl 1275.49087
[131] Stollmann, P., A dual characterization of length spaces with application to Dirichlet metric spaces, Studia Math., 198, 3, 221-233 (2010) · Zbl 1198.31005
[132] Strichartz, RS, Sub-Riemannian geometry, J. Differ. Geom., 24, 2, 221-263 (1986) · Zbl 0609.53021
[133] Strichartz, R. S., Corrections to: “Sub-Riemannian geometry” [J. Differential Geom. 24 (1986), no. 2, 221-263], J. Differential Geom. 30, (1989), 595-596 · Zbl 0609.53021
[134] Sturm, K.-T.: The geometric aspect of Dirichlet forms, New directions in Dirichlet forms, AMS/IP Stud. Adv. Math., vol.8, Amer. Math. Soc., Providence, RI, 233-277 (1998) · Zbl 0922.60074
[135] Sturm, K-T, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., 32, 2, 275-312 (1995) · Zbl 0854.35015
[136] Sturm, K-T, On the geometry of metric measure spaces. I, Acta Math., 196, 1, 65-131 (2006) · Zbl 1105.53035
[137] Sturm, K-T, On the geometry of metric measure spaces. II, Acta Math., 196, 1, 133-177 (2006) · Zbl 1106.53032
[138] Sturm, K-T, Distribution-valued Ricci bounds for metric measure spaces, singular time changes, and gradient estimates for Neumann heat flows, Geom. Funct. Anal., 30, 6, 1648-1711 (2020) · Zbl 1475.53047
[139] Villani, C., Topics in Optimal Transportation. Graduate Studies in Mathematics (2003), Providence: American Mathematical Society, Providence · Zbl 1106.90001
[140] Villani, C., Optimal Transport, Old and New, Fundamental Principles of Mathematical Sciences (2009), Berlin: Springer, Berlin · Zbl 1156.53003
[141] Villani, C.: Inégalités isopérimétriques dans les espaces métriques mesurés [d’après F. Cavalletti & A. Mondino], Astérisque, (407), (2019), Exp. No. 1127, 213-265 (French), Séminaire Bourbaki. Vol. 2016/2017. Exposés 1120-1135
[142] von Renesse, M-K; Sturm, K-T, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Commun. Pure Appl. Math., 58, 7, 923-940 (2005) · Zbl 1078.53028
[143] Wang, F-Y, Equivalent semigroup properties for the curvature-dimension condition, Bull. Sci. Math., 135, 6-7, 803-815 (2011) · Zbl 1230.60083
[144] Wang, F-Y, Derivative formula and gradient estimates for Gruschin type semigroups, J. Theoret. Probab., 27, 1, 80-95 (2014) · Zbl 1334.60167
[145] Wang, F-Y, Exponential contraction in Wasserstein distances for diffusion semigroups with negative curvature, Potential Anal., 53, 3, 1123-1144 (2020) · Zbl 1454.60129
[146] Zelenko, I.; Li, C., Differential geometry of curves in Lagrange Grassmannians with given Young diagram, Differ. Geom. Appl., 27, 6, 723-742 (2009) · Zbl 1177.53020
[147] Zhang, H-C; Zhu, X-P, Yau’s gradient estimates on Alexandrov spaces, J. Differ. Geom., 91, 3, 445-522 (2012) · Zbl 1258.53075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.