×

A study of a nonlinear Riemann-Liouville coupled integro-differential system with coupled nonlocal fractional integro-multipoint boundary conditions. (English) Zbl 07773919

Summary: We discuss the existence of solutions for a boundary value problem of nonlinear coupled Riemann-Liouville fractional integro-differential equations equipped with coupled nonlocal fractional integro-multipoint boundary conditions. The standard tools of the modern functional analysis are employed to derive the desired results for the problem at hand. The case of nonlinearities depending on the Riemann-Liouville fractional integrals is also discussed. Examples illustrating the obtained results are presented.

MSC:

34A08 Fractional ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
Full Text: DOI

References:

[1] H. A. Fallahgoul, S. M. Focardi, and F. J. Fabozzi, Fractional Calculus and Fractional Processes with Applications to Financial Economics, Theory and Application, London, Elsevier/Academic Press, 2017. · Zbl 1381.60001
[2] R. L. Magin, Fractional Calculus in Bioengineering, Danbury, CT, Begell House Publishers, 2006.
[3] F. Mainardi, “Some basic problems in continuum and statistical mechanics,” in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., Berlin, Springer, 1997, pp. 291-348. · Zbl 0917.73004
[4] A. K. Golmankhaneh and D. Baleanu, Calculus on Fractals, Fractional Dynamics, Berlin, De Gruyter Open, 2015, pp. 307-332.
[5] Z. Bai, “On positive solutions of a nonlocal fractional boundary value problem,” Nonlinear Anal., vol. 72, pp. 916-924, 2010, doi:10.1016/j.na.2009.07.033. · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033
[6] B. Ahmad and J. J. Nieto, “Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions,” Bound. Value Probl., vol. 2011, p. 36, 2011, doi:10.1186/1687-2770-2011-36. · Zbl 1275.45004 · doi:10.1186/1687-2770-2011-36
[7] B. Ahmad, A. Alsaedi, A. Assolami, and R. P. Agarwal, “A study of Riemann-Liouville fractional nonlocal integral boundary value problems,” Bound. Value Probl., vol. 2013, p. 274, 2013, doi:10.1186/1687-2770-2013-274. · Zbl 1291.34003 · doi:10.1186/1687-2770-2013-274
[8] R. Luca, “On a class of nonlinear singular Riemann-Liouville fractional differential equations,” Results Math., vol. 73, no. 125, pp. 1-15, 2018, doi:10.1007/s00025-018-0887-5. · Zbl 1403.34006 · doi:10.1007/s00025-018-0887-5
[9] R. P. Agarwal and R. Luca, “Positive solutions for a semipositone singular Riemann-Liouville fractional differential problem,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 20, pp. 823-831, 2019, doi:10.1515/ijnsns-2018-0376. · Zbl 07168392 · doi:10.1515/ijnsns-2018-0376
[10] R. P. Agarwal, S. Hristova, and D. O’Regan, “Exact solutions of linear Riemann-Liouville fractional differential equations with impulses,” Rocky Mt. J. Math., vol. 50, pp. 779-791, 2020, doi:10.1216/rmj.2020.50.779. · Zbl 1448.34008 · doi:10.1216/rmj.2020.50.779
[11] B. Ahmad, B. Alghamdi, A. Alsaedi, and S. K. Ntouyas, “Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions,” AIMS Math., vol. 6, pp. 7093-7110, 2021, doi:10.3934/math.2021416. · Zbl 1484.34171 · doi:10.3934/math.2021416
[12] I. M. Sokolov, J. Klafter, and A. Blumen, “Fractional kinetics,” Phys. Today, vol. 55, pp. 48-54, 2002, doi:10.1063/1.1535007. · doi:10.1063/1.1535007
[13] N. Nyamoradi, M. Javidi, and B. Ahmad, “Dynamics of SVEIS epidemic model with distinct incidence,” Int. J. Biomath. (IJB), vol. 8, no. 6, p. 1550076, 2015, doi:10.1142/s179352451550076x. · Zbl 1356.92087 · doi:10.1142/s179352451550076x
[14] I. Petras and R. L. Magin, “Simulation of drug uptake in a two compartmental fractional model for a biological system,” Commun. Nonlinear Sci. Numer. Simulat., vol. 16, pp. 4588-4595, 2011, doi:10.1016/j.cnsns.2011.02.012. · Zbl 1229.92043 · doi:10.1016/j.cnsns.2011.02.012
[15] W. Yukunthorn, B. Ahmad, S. K. Ntouyas, and J. Tariboon, “On Caputo-Hadamard type fractional impulsive hybrid systems with nonlinear fractional integral conditions,” Nonlinear Anal. Hybrid Syst., vol. 19, pp. 77-92, 2016, doi:10.1016/j.nahs.2015.08.001. · Zbl 1331.34017 · doi:10.1016/j.nahs.2015.08.001
[16] N. Heymans and J. C. Bauwens, “Fractal rheological models and fractional differential equations for viscoelastic behavior,” Rheol. Acta, vol. 33, pp. 210-219, 1994, doi:10.1007/bf00437306. · doi:10.1007/bf00437306
[17] M. Kirane, B. Ahmad, A. Alsaedi, and M. Al-Yami, “Non-existence of global solutions to a system of fractional diffusion equations,” Acta Appl. Math., vol. 133, pp. 235-248, 2014, doi:10.1007/s10440-014-9865-4. · Zbl 1327.35406 · doi:10.1007/s10440-014-9865-4
[18] S. Pati, J. R. Graef, and S. Padhi, “Positive periodic solutions to a system of nonlinear differential equations with applications to Lotka-Volterra-type ecological models with discrete and distributed delays,” J. Fixed Point Theory Appl., vol. 2121, p. 80, 2019, doi:10.1007/s11784-019-0715-x. · Zbl 1426.34049 · doi:10.1007/s11784-019-0715-x
[19] J. Henderson and R. Luca, “Systems of Riemann-Liouville fractional equations with multi-point boundary conditions,” Appl. Math. Comput., vol. 309, pp. 303-323, 2017, doi:10.1016/j.amc.2017.03.044. · Zbl 1411.34014 · doi:10.1016/j.amc.2017.03.044
[20] H. T. Tuan, A. Czornik, J. J. Nieto, and M. Niezabitowski, “Global attractivity for some classes of Riemann-Liouville fractional differential systems,” J. Integr. Equ. Appl., vol. 31, no. 2, pp. 265-282, 2019, doi:10.1216/jie-2019-31-2-265. · Zbl 1431.34013 · doi:10.1216/jie-2019-31-2-265
[21] A. Alsaedi, S. Aljoudi, and B. Ahmad, “Existence of solutions for Riemann-Liouville type coupled systems of fractional integro-differential equations and boundary conditions,” Electron. J. Differ. Equ., vol. 2016, no. 211, p. 14, 2016. · Zbl 1346.34051
[22] R. P. Agarwal, B. Ahmad, D. Garout, and A. Alsaedi, “Existence results for coupled nonlinear fractional differential equations equipped with nonlocal coupled flux and multi-point boundary conditions,” Chaos, Solit. Fractals, vol. 102, pp. 149-161, 2017, doi:10.1016/j.chaos.2017.03.025. · Zbl 1374.34060 · doi:10.1016/j.chaos.2017.03.025
[23] R. Luca, “Positive solutions for a system of fractional differential equations with p-Laplacian operator and multi-point boundary conditions,” Nonlinear Anal. Model Control, vol. 23, no. 5, pp. 771-801, 2018, doi:10.15388/na.2018.5.8. · Zbl 1420.34020 · doi:10.15388/na.2018.5.8
[24] B. Ahmad, A. Alsaedi, S. K. Ntouyas, and Y. Alruwaily, “On a fractional integro-differential system involving Riemann-Liouville and Caputo derivatives with coupled multi-point boundary conditions,” Int. J. Difference Equ., vol. 15, no. 2, pp. 209-241, 2020. · Zbl 1454.34010
[25] A. Alsaedi, R. Luca, and B. Ahmad, “Existence of positive solutions for a system of singular fractional boundary value problems with p-Laplacian operators,” Mathematics, vol. 8, p. 1890, 2020, doi:10.3390/math8111890. · doi:10.3390/math8111890
[26] S. Padhi, B. S. R. V. Prasad, and D. Mahendru, “Systems of Riemann-Liouville fractional differential equations with nonlocal boundary conditions-Existence, nonexistence, and multiplicity of solutions: method of fixed point index,” Math. Methods Appl. Sci., vol. 44, pp. 8266-8285, 2021. doi:10.1002/mma.5931. · Zbl 1476.34069 · doi:10.1002/mma.5931
[27] X. M. Zhang, “A new method for searching the integral solution of system of Riemann-Liouville fractional differential equations with non-instantaneous impulses,” J. Comput. Appl. Math., vol. 388, p. 113307, 2021, doi:10.1016/j.cam.2020.113307. · Zbl 1460.34019 · doi:10.1016/j.cam.2020.113307
[28] B. Ahmad, N. Alghamdi, A. Alsaedi, and S. K. Ntouyas, “Multi-term fractional differential equations with nonlocal boundary conditions,” Open Math., vol. 16, pp. 1519-1536, 2018, doi:10.1515/math-2018-0127. · Zbl 1411.34008 · doi:10.1515/math-2018-0127
[29] B. Ahmad, M. Alghanmi, A. Alsaedi, and J. J. Nieto, “Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions,” Appl. Math. Lett., vol. 116, p. 107018, 2021, doi:10.1016/j.aml.2021.107018. · Zbl 1466.34005 · doi:10.1016/j.aml.2021.107018
[30] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol 204, Amsterdam, Elsevier, 2006. · Zbl 1092.45003
[31] Y. Zhou, Basic Theory of Fractional Differential Equations, Singapore, World Scientific, 2014. · Zbl 1336.34001
[32] M. A. Krasnoselski, Uspekhi Mat. Nauk (N.S.), vol. 10, pp. 123-127, 1955. · Zbl 0064.12002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.