×

Stationary processes and pure point diffraction. (English) Zbl 1380.37020

Summary: We consider the construction and classification of some new mathematical objects, called ergodic spatial stationary processes, on locally compact abelian groups. These objects provide a natural and very general setting for studying diffraction and the famous inverse problems associated with it. In particular, we can construct complete families of solutions to the inverse problem from any given positive pure point measure that is chosen to be the diffraction. In this case these processes can be classified by the dual of the group of relators based on the set of Bragg peaks, and this gives an abstract solution to the homometry problem for pure point diffraction.

MSC:

37A60 Dynamical aspects of statistical mechanics
37A50 Dynamical systems and their relations with probability theory and stochastic processes
78A45 Diffraction, scattering
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
81U40 Inverse scattering problems in quantum theory

References:

[1] M.Baake, M.Birkner and R. V.Moody. Diffraction of stochastic point sets: explicitly computable examples. Comm. Math. Phys.293 (2010), 611-660.10.1007/s00220-009-0942-x · Zbl 1197.82053
[2] M.Baake and A. C. D.van Enter. Close-packed dimers on the line: diffraction versus dynamical spectrum. J. Stat. Phys.143 (2011), 88-101.10.1007/s10955-011-0163-5 · Zbl 1218.82001
[3] M.Baake, A. C. D.van Enter and D.Lenz. Dynamical versus diffraction spectrum for structures with finite local complexity. Ergod. Th. & Dynam. Sys.35 (2015), 217-241.10.1017/etds.2014.28 · Zbl 1352.37033
[4] M.Baake and U.Grimm. Aperiodic Order(A Mathematical Invitation, 1). Cambridge University Press, Cambridge, 2013.10.1017/CBO9781139025256 · Zbl 1295.37001
[5] M.Baake, H.Kösters and R. V.Moody. Diffraction theory of point processes: systems with clumping and repulsion. J. Stat. Phys.159 (2015), 915-936.10.1007/s10955-014-1178-5 · Zbl 1320.60114
[6] M.Baake and D.Lenz. Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra. Ergod. Th. & Dynam. Sys.24 (2004), 1867-1893.10.1017/S0143385704000318 · Zbl 1127.37004
[7] M. Baake and R. V. Moody (Eds). Directions in Mathematical Quasicrystals (CRM Monograph Series, 13). American Mathematical Society, Providence, RI, 2000. · Zbl 0972.52013
[8] J.Bellissard, D.Hermann and M.Zarrouati. Hulls of aperiodic solids and gap labeling theorems. Directions in Mathematical Quasicrystals (CRM Monograph Series, 13). Eds. M. Baake and R. V. Moody. American Mathematical Society, Providence, RI, 2000, 207-259. · Zbl 0972.52014
[9] C.Berg and G.Forst. Potential Theory on Locally Compact Abelian Groups. Springer, Berlin, 1975.10.1007/978-3-642-66128-0 · Zbl 0308.31001
[10] D. J.Daley and D.Vere-Jones. An Introduction to the Theory of Point Processes(Springer Series in Statistics). Springer, New York, 1988. · Zbl 0657.60069
[11] X.Deng and R. V.Moody. Dworkin’s argument revisited: point processes, dynamics, diffraction, and correlations. J. Geom. Phys.58 (2008), 506-541.10.1016/j.geomphys.2007.12.006 · Zbl 1145.37007
[12] S.Dworkin. Spectral theory and X-ray diffraction. J. Math. Phys.34 (1993), 2965-2967.10.1063/1.530108 · Zbl 0808.47052 · doi:10.1063/1.530108
[13] A. C. D.van Enter and J.Miȩkisz. How should one define a (weak) crystal?J. Stat. Phys.66 (1992), 1147-1153.10.1007/BF01055722 · Zbl 0943.82584
[14] J.Gil de Lamadrid and L. N.Argabright. Almost Periodic Measures(Memoirs of the American Mathematical Society, 428). American Mathematical Society, Providence, RI, 1990. · Zbl 0719.43006
[15] J.-B.Gouéré. Diffraction et mesure de Palm des processus ponctuels. C. R. Math. Acad. Sci. Paris336 (2003), 57-62.10.1016/S1631-073X(02)00029-8 · Zbl 1052.60037 · doi:10.1016/S1631-073X(02)00029-8
[16] J.-B.Gouéré. Quasicrystals and almost periodicity. Comm. Math. Phys.255 (2005), 651-681. · Zbl 1081.52020
[17] F. A.Grünbaum and C. C.Moore. The use of higher-order invariants in the determination of generalized Patterson cyclotomic sets. Acta Crystallogr. A51 (1995), 310-323.10.1107/S0108767394009827 · Zbl 1176.82034
[18] A.Hof. On diffraction by aperiodic structures. Comm. Math. Phys.169 (1995), 25-43.10.1007/BF02101595 · Zbl 0821.60099 · doi:10.1007/BF02101595
[19] A. F.Karr. Point Processes and their Statistical Inference. Marcel Dekker, New York, 1991. · Zbl 0733.62088
[20] U.Krengel. Ergodic Theorems. de Gruyter, Berlin, 1985.10.1515/9783110844641 · Zbl 0471.28011 · doi:10.1515/9783110844641
[21] J.Lagarias. Mathematical quasicrystals and the problem of diffraction. Directions in Mathematical Quasicrystals(CRM Monograph Series, 13). Eds. M.Baake and R. V.Moody. American Mathematical Society, Providence, RI, 2000, pp. 61-93. · Zbl 1161.52312
[22] J.Lagarias and P. A. B.Pleasants. Local complexity of Delone sets and crystallinity. Canad. Math. Bull.45 (2002), 634-652.10.4153/CMB-2002-058-0 · Zbl 1016.52013
[23] J.Lagarias and P. A. B.Pleasants. Repetitive Delone sets and quasicrystals. Ergod. Th. & Dynam. Sys.23 (2003), 831-867.10.1017/S0143385702001566 · Zbl 1062.52021
[24] J.-Y.Lee, R. V.Moody and B.Solomyak. Pure point dynamical and diffraction spectra. Ann. Henri Poincaré3 (2002), 1003-1018.10.1007/s00023-002-8646-1 · Zbl 1025.37004
[25] D.Lenz. Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks. Comm. Math. Phys.287 (2009), 225-258.10.1007/s00220-008-0594-2 · Zbl 1178.37011 · doi:10.1007/s00220-008-0594-2
[26] D.Lenz and R. V.Moody. Extinctions and correlations for uniformly discrete point processes with pure point spectrum. Comm. Math. Phys.289 (2009), 907-923.10.1007/s00220-009-0818-0 · Zbl 1170.60036
[27] D.Lenz and C.Richard. Pure point diffraction and cut and project schemes for measures: the smooth case. Math. Z.256 (2007), 347-378.10.1007/s00209-006-0077-0 · Zbl 1129.28003
[28] D.Lenz and N.Strungaru. Pure point spectrum for measure dynamical systems on locally compact abelian groups. J. Math. Pures Appl.92 (2009), 323-341.10.1016/j.matpur.2009.05.013 · Zbl 1178.37008
[29] L. H.Loomis. An Introduction to Abstract Harmonic Analysis. Van Nostrand, Princeton, NJ, 1953. · Zbl 0052.11701
[30] R. V.Moody and N.Strungaru. Point sets and dynamical systems in the autocorrelation topology. Canad. Math. Bull.47 (2004), 82-99.10.4153/CMB-2004-010-8 · Zbl 1051.37004
[31] R. V.Moody and N.Strungaru. Almost periodic measures and their Fourier transforms. Eds. M.Baake and U.Grimm. Preprint [to appear in Aperiodic Order, Vol. 2: Crystallography and Almost Periodicity]. · Zbl 1421.42004
[32] C.Radin. Miles of Tiles(Student Mathematical Library). American Mathematical Society, Providence, RI, 1999.10.1090/stml/001 · Zbl 0932.52005 · doi:10.1090/stml/001
[33] C.Radin and M.Wolff. Space tilings and local isomorphism. Geom. Dedicata42 (1992), 355-360.10.1007/BF02414073 · Zbl 0752.52014
[34] E. A.Robinson. The dynamical properties of Penrose tilings. Trans. Amer. Math. Soc.348 (1996), 4447-4464.10.1090/S0002-9947-96-01640-6 · Zbl 0876.28020 · doi:10.1090/S0002-9947-96-01640-6
[35] E. A.Robinson. Halmos – von Neumann theorem for model sets, and almost automorphic dynamical systems. Dynamics, Ergodic Theory, and Geometry(Mathematical Sciences Research Institute Publications, 54). Cambridge University Press, Cambridge, 2007, pp. 243-272.10.1017/CBO9780511755187.010 · Zbl 1155.37007
[36] The Royal Institution, Crystallography Timeline.http://www.rigb.org/our-history/history-of-research/crystallography-timeline. · Zbl 1477.01026
[37] M.Schlottmann. Generalized model sets and dynamical systems. Directions in Mathematical Quasicrystals(CRM Monograph Series, 13). Eds. M.Baake and R. V.Moody. American Mathematical Society, Providence, RI, 2000, pp. 143-159. · Zbl 0984.37005
[38] B.Solomyak. Spectrum of dynamical systems arising from Delone sets. Quasicrystals and Discrete Geometry(Fields Institute Monographs, 10). Ed. J.Patera. American Mathematical Society, Providence, RI, 1998, pp. 265-275. · Zbl 0988.37010
[39] B.Solomyak. Dynamics of self-similar tilings. Ergod. Th. & Dynam. Sys.17 (1997), 695-738; Erratum: Ergod. Th. & Dynam. Sys.19 (1999) 1685.10.1017/S0143385797084988 · Zbl 0884.58062
[40] N.Strungaru. Almost periodic measures and long-range order in Meyer sets. Discrete Comput. Geom.33 (2005), 483-505.10.1007/s00454-004-1156-9 · Zbl 1062.43008 · doi:10.1007/s00454-004-1156-9
[41] A.Tempelman. Ergodic Theorems for Group Actions. Kluwer, Dordrecht, 1992.10.1007/978-94-017-1460-0 · Zbl 0753.28014 · doi:10.1007/978-94-017-1460-0
[42] V.Terauds. The inverse problem of pure point diffraction—examples and open questions. J. Stat. Phys.152 (2013), 954-968.10.1007/s10955-013-0790-0 · Zbl 1278.82017 · doi:10.1007/s10955-013-0790-0
[43] V.Terauds and M.Baake. Some comments in the inverse problem of pure point diffraction. Aperiodic Crystals. Eds. S.Schmidt, R. L.Withers and R.Lifshitz. Springer, Dordrecht, 2013, pp. 35-41.
[44] P.Walters. An Introduction to Ergodic Theory. Springer, Berlin, 1982.10.1007/978-1-4612-5775-2 · Zbl 0475.28009 · doi:10.1007/978-1-4612-5775-2
[45] R. L.Withers. ‘Disorder’: structured diffuse scattering and local crystal chemistry. Advances in Imaging and Electron Physics. Elsevier, San Diego, 2008, 152.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.