×

The absence of eigenvalues for certain operators with partially periodic coefficients. (English. Russian original) Zbl 1497.35402

St. Petersbg. Math. J. 33, No. 5, 867-878 (2022); translation from Algebra Anal. 33, No. 5, 176-192 (2021).
Summary: The absence of eigenvalues is proved for the Schrödinger operator \(-\Delta + V(x,y)\) in the Euclidean space whose potential is periodic in some variables and decays in the remaining variables faster than power 1. A similar result for the Maxwell operator is established.

MSC:

35Q40 PDEs in connection with quantum mechanics
35Q60 PDEs in connection with optics and electromagnetic theory
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
78A30 Electro- and magnetostatics
Full Text: DOI

References:

[1] M. Sh. Birman and M. Z. Solomyak, The selfadjoint Maxwell operator in arbitrary domains, Algebra i Analiz 1 (1989), no. 1, 96-110; English transl., Leningrad Math. J. 1 (1990), no. 1, 99-115. 1015335 · Zbl 0733.35099
[2] M. Sh. Birman and T. A. Suslina, Absolute continuity of a two-dimensional periodic magnetic Hamiltonian with discontinuous vector potential, Algebra i Analiz 10 (1998), no. 4, 1-36; English transl., St. Petersburg Math. J. 10 (1999), no. 4, 579-601. 1654063 · Zbl 0922.35101
[3] N. Filonov, Absolute continuity of the two-dimensional Schrodinger operator with partially periodic coefficients, Algebra i Analiz 29 (2017), no. 2, 220-241; English transl., St. Petersburg Math. J. 29 (2018), no. 2, 383-398. 3660679 · Zbl 06852218
[4] N. Filonov, Schrodinger operator in a cylinder with a decreasing potential, Algebra i Analiz 33 (2021), no. 1, 213-245; English transl., St. Petersburg Math. J. 33 (2021), no. 1, 155-178. 4219510 · Zbl 1480.35306
[5] N. Filonov and F. Klopp, Absolute continuity of the spectrum of a Schr\"odinger operator with a potential which is periodic in some directions and decays in others, Doc. Math. 9 (2004), 107-121. 2054982 · Zbl 1081.35016
[6] N. Filonov and F. Klopp, Absolutely continuous spectrum for the isotropic Maxwell operator with coefficients that are periodic in some directions and decay in others, Comm. Math. Phys. 258 (2005), no. 1, 75-85. 2166840 · Zbl 1082.35114
[7] V. Hoang and M. Radosz, Absence of bound states for waveguides in 2D periodic structures, J. Math. Phys. 55 (2014), no. 3, 033506. 3221271 · Zbl 1294.78010
[8] A. Morame, The absolute continuity of the spectrum of Maxwell operator in a periodic media, J. Math. Phys. 41 (2000), no. 10, 7099-7108. 1781426 · Zbl 1034.82062
[9] A. Prokhorov and N. Filonov, The Maxwell operator with periodic coefficients in a cylinder, Algebra i Analiz 29 (2017), no. 6, 182-196; English transl., St. Petersburg Math. J. 29 (2018), no. 6, 997-1006. 3723815 · Zbl 1398.35228
[10] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Acad. Press, New York, 1978. 0493421 · Zbl 0401.47001
[11] T. A. Suslina, Absolute continuity of the spectrum of the periodic Maxwell operator in a layer, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 288 (2002), 232-255; English transl., J. Math. Sci. (N.Y.) 123 (2004), no. 6, 4654-4667. 1923552 · Zbl 1068.35081
[12] D. R. Yafaev, Mathematical scattering theory. General theory, S.-Peterburg. Univ., St. Petersburg, 1994. (Russian) 1784870 · Zbl 0761.47001
[13] D. R. Yafaev, Mathematical scattering theory. Analytic theory, Math. Surveys Monogr., vol. 158, Amer. Math. Soc., Providence, RI, 2010. 2598115 · Zbl 1197.35006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.