×

On quasisymmetric mappings in semimetric spaces. (English) Zbl 1495.54017

A semimetric on a set \(X\) is a function \(d:X^2\to[0,\infty)\) that satisfies the first two conditions of a metric, \(x=y\) iff \(d(x,y)=0\) and \(d(x,y)=d(y,x)\), but not (necessarily) the triangle inequality. One topologizes a semimetric space in the natural way: \(U\) is open iff for every \(x\in U\) there is a positive \(r\) such that \(B(x,r)\subseteq U\). The possible absence of the triangle inequality makes it possible that the ‘open’ balls \(B(x,r)\) are no longer elements of the topology. After some remarks about the topology induced by the semimetric the authors concentrate on semimetric phenomena.
From [P. Tukia and J. Väisälä, Ann. Acad. Sci. Fenn., Ser. A I, Math. 5, 97–114 (1980; Zbl 0403.54005)] they adopt the definition of a quasisymmetric map between semimetric spaces. More precisely: given a homeomorphism \(\eta:[0,\infty)\to[0,\infty)\) a map \(f\) from \((X,d)\) to \((Y,\rho)\) is said to be \(\eta\)-quasisymmetric if for all \(t>0\) and all \(a\), \(b\), and \(x\) in \(X\) one has the implication if \(d(x,a)\le t\cdot d(x,b)\) then \(\rho\bigl(f(x),f(a)\bigr)\le\eta(t)\cdot\rho\bigl(f(x),f(b)\bigr)\). The remainder of the paper is devoted to determining when such maps preserve structural properties of the domain, such as having a triangle function (a function \(\Phi\) that satisfies \(d(x,z)\le\Phi\bigl(d(x,y),d(y,z)\bigr)\) for all \(x\), \(y\), and \(z\)), satisfying Ptolemy’s inequality (\(d(x,z)\cdot d(t,y)\le d(x,y)\cdot d(t,z) + d(x,t)\cdot d(y,z)\) for all \(x\), \(y\), \(z\), and \(t\)), or betweenness relations. The final sections are devoted to a generalization of Theorem 2.5 from [loc. cit.] and to weak similarities between semimetric spaces.
Reviewer: K. P. Hart (Delft)

MSC:

54E25 Semimetric spaces
54C99 Maps and general types of topological spaces defined by maps

Citations:

Zbl 0403.54005

References:

[1] Afanaseva, E. S., and V. V. Bilet: Some properties of quasisymmetries in metric spaces. -Ukr. Mat. Visn. 16:1, 2019, 2-9.
[2] Aseev, V. V.: Constructing quasisymmetric functions via graph-directed iterated function systems. -Sib. Mat. Zh. 50:6, 2009, 1203-1215. · Zbl 1224.30099
[3] Aseev, V. V.: The coefficient of quasimöbiusness in Ptolemaic spaces. -Sib. Elektron. Mat. Izv. 15, 2018, 246-257. · Zbl 1397.30021
[4] Balogh, Z. M., and P. Koskela: Quasiconformality, quasisymmetry, and removability in Loewner spaces. -Duke Math. J. 101:3, 2000, 554-577. · Zbl 1072.30503
[5] Berger, M.: Geometry I. -Universitext, Springer-Verlag, Berlin, 2009. · Zbl 1153.51001
[6] Bessenyei, M., and Z. Páles: A contraction principle in semimetric spaces. -J. Nonlinear Convex Anal. 18:3, 2017, 515-524. · Zbl 1396.54037
[7] Beurling, A., and L. V. Ahlfors: The boundary correspondence under quasiconformal mappings. -Acta Math. 96, 1956, 125-142. · Zbl 0072.29602
[8] Bishop, C. J., H. Hakobyan, and M. Williams: Quasisymmetric dimension distortion of Ahlfors regular subsets of a metric space. -Geom. Funct. Anal. 26:2, 2016, 379-421. · Zbl 1353.30023
[9] Blumenthal, L. M.: Theory and applications of distance geometry. -Clarendon Press, Ox-ford, 1953. · Zbl 0050.38502
[10] Buckley, S. M., K. Falk, and D. J. Wraith: Ptolemaic spaces and CAT(0). -Glasg. Math. J. 51:2, 2009, 301-314. · Zbl 1171.53024
[11] Chittenden, E. W.: On the equivalence of écart and voisinage. -Trans. Amer. Math. Soc. 18, 1917, 161-166. · JFM 46.0288.03
[12] Chrząszcz, K., J. Jachymski, and F. Turoboś: On characterizations and topology of regular semimetric spaces. -Publ. Math. Debrecen 93:1-2, 2018, 87-105. · Zbl 1413.54089
[13] Czerwik, S.: Contraction mappings in b-metric spaces. -Acta Math. Univ. Ostrav. 1:1, 1993, 5-11. · Zbl 0849.54036
[14] Czerwik, S.: Nonlinear set-valued contraction mappings in b-metric spaces. -Atti Semin. Mat. Fis. Univ. Modena 46:2, 1998, 263-276. · Zbl 0920.47050
[15] Diatta, J., and B. Fichet: Quasi-ultrametrics and their 2-ball hypergraphs. -Discrete Math. 192:1-3, 1998, 87-102. · Zbl 0951.54023
[16] Dobos, J., and Z. Piotrowski: A note on metric preserving functions. -Int. J. Math. Math. Sci. 19, 1966, 199-200. · Zbl 0840.26006
[17] Dovgosheȋ, A. A., and E. A. Petrov: Ptolemaic spaces. -Sib. Math. J. 52:2, 2011, 222-229. · Zbl 1228.51014
[18] Dovgoshey, O., and O. Martio: Functions transferring metrics to metrics. -Beitr. Algebra Geom. 54, 2013, 237-261. · Zbl 1276.54020
[19] Dovgoshey, O., and E. Petrov: Weak similarities of metric and semimetric spaces. -Acta Math. Hung. 141:4, 2013, 301-319. · Zbl 1324.54051
[20] Dung, N. V., and V. T. L. Hang: On regular semimetric spaces having strong triangle func-tions. -J. Fixed Point Theory Appl. 19:3, 2017, 2069-2079. · Zbl 1491.54072
[21] Fréchet, M.: Sur quelques points du calcul fonctionnel. -Rend. Circ. Mat. Palermo 22, 1906, 1-74. · JFM 37.0348.02
[22] Frink, A. H.: Distance functions and the metrization problem. -Bull. Amer. Math. Soc. 43, 1937, 133-142. · JFM 63.0571.03
[23] Greenhoe, D. J.: Properties of distance spaces with power triangle inequalities. -Carpathian Math. Publ. 8:1, 2016, 51-82. · Zbl 1347.54041
[24] Hardy, G. H., J. E. Littlewood, and G. Pólya: Inequalities. -Cambridge Univ. Press, Cambridge, 1952. · Zbl 0047.05302
[25] Hart, K. P., J. Nagata, and J. E. Vaughan: Encyclopedia of general topology. -Elsevier, Amsterdam, 2004. · Zbl 1059.54001
[26] Hausdorff, F.: Grundzüge der Mengenlehre. -Veit & Comp., Leipzig, 1914. · JFM 45.0123.01
[27] Heinonen, J.: Lectures on analysis on metric spaces. -Springer, New York, 2001. · Zbl 0985.46008
[28] Heinonen, J., and P. Koskela: Quasiconformal maps in metric spaces with controlled ge-ometry. -Acta Math. 181:1, 1998, 1-61. · Zbl 0915.30018
[29] Ibragimov, Z.: Quasi-isometric extensions of quasisymmetric mappings of the real line com-patible with composition. -Ann. Acad. Sci. Fenn. Math. 35:1, 2010, 221-233. · Zbl 1198.30021
[30] Jachymski, J., and F. Turoboś: On functions preserving regular semimetrics and quasimet-rics satisfying the relaxed polygonal inequality. -RACSAM 114:159, 2020, 1-11. · Zbl 1448.54016
[31] Karlin, A. R., N. Klein, and Sh. O. Gharan: A (slightly) improved approximation algo-rithm for metric TCP. -In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, 2021, 32-45. · Zbl 07765151
[32] Kelingos, J. A.: Boundary correspondence under quasiconformal mappings. -Mich. Math. J. 13, 1966, 235-249. · Zbl 0146.30702
[33] Kirk, W. A., and N. Shahzad: Fixed points and Cauchy sequences in semimetric spaces. -J. Fixed Point Theory Appl. 17:3, 2015, 541-555. · Zbl 1326.54045
[34] Krasner, M.: Nombres semi-réels et espaces ultrametriques. -C. R. Acad. Sci. Paris 219, 1944, 433-435. · Zbl 0061.06202
[35] Krasnoselskii, M. A., and Ya. B. Rutitskii: Convex functions and Orlich spaces. -Fiz-matgiz, Moscow, 1958 (in Russian). · Zbl 0084.10104
[36] Krukowski, M., and F. Turoboś: Approximate solutions to the traveling salesperson prob-lem on semimetric graphs. -arXiv:2105.07275v1, 2021.
[37] Kunen, E., and J. E. Vaughan: Handbook of set-theoretic topology. -North-Holland Pub-lishing Co., Amsterdam, 1984. · Zbl 0546.00022
[38] Li, Y., M. Vuorinen, and Q. Zhou: Weakly quasisymmetric maps and uniform spaces. -Comput. Methods Funct. Theory 18:4, 2018, 689-715. · Zbl 1404.30033
[39] Liu, H., and X. Huang: The properties of quasisymmetric mappings in metric spaces. -J. Math. Anal. Appl. 435:2, 2016, 1591-1606. · Zbl 1331.30056
[40] Menger, K.: Untersuchungen über allgemeine Metrik. -Math. Ann. 100, 1928, 75-163. · JFM 54.0622.02
[41] Miao, R., and V. Schroeder: A flat strip theorem for Ptolemaic spaces. -Math. Z. 274:1-2, 2013, 461-470. · Zbl 1277.53080
[42] Niemytzki, V. W.: On the “third axiom of metric space”. -Trans. Amer. Math. Soc. 29, 1927, 507-513. · JFM 53.0558.01
[43] Petrov, E.: Weak similarities of finite ultrametric and semimetric spaces. -p-Adic Numbers Ultrametric Anal. Appl. 10:2, 2018, 108-117. · Zbl 1403.54019
[44] Petrov, E., and R. Salimov: On quasisymmetric mappings between ultrametric spaces. -p-Adic Numbers Ultrametric Anal. Appl. 13:3, 2021, 231-238. · Zbl 1485.54032
[45] Petrov, E., and R. Salimov: Quasisymmetric mappings in b-metric spaces. -Ukr. Mat. Visn. 18:1, 2021, 59-69.
[46] Polyanin, A. D., and A. V. Manzhirov: Handbook of integral equations: exact solutions. -Faktorial, Moscow, 1998 (in Russian). · Zbl 0896.45001
[47] Renggli, H.: On triangular dilatation. -In: Proceedings of the Romanian-Finnish Seminar on Teichmüller Spaces and Quasiconformal Mappings (Braşov, 1969), 1971, 255-259. · Zbl 0216.35202
[48] Schoenberg, I. J.: On metric arcs of vanishing Menger curvature. -Ann. of Math. (2) 41, 1940, 715-726. · JFM 66.0898.02
[49] Schoenberg, I. J.: A remark on M. M. Day’s characterization of inner-product spaces and a conjecture of L. M. Blumenthal. -Proc. Amer. Math. Soc. 3, 1952, 961-964. · Zbl 0049.08301
[50] Tukia, P., and J. Väisälä: Quasisymmetric embeddings of metric spaces. -Ann. Acad. Sci. Fenn. Ser. A I Math. 5, 1980, 97-114. · Zbl 0403.54005
[51] Turoboś, F.: Around the concept of a semimetric space: generalizations of the triangle inequality, functions preserving metric-type properties, an application to the Traveling Sales-person Problem. -PhD thesis, Lodz University of Technology, Lodz, 2021.
[52] Väisälä, J.: Quasi-symmetric embeddings in Euclidean spaces. -Trans. Amer. Math. Soc. 264, 1981, 191-204. · Zbl 0456.30018
[53] Väisälä, J.: Invariants for quasisymmetric, quasimöbius and bilipschitz maps. -J. Anal. Math. 50, 1988, 201-223. · Zbl 0682.30014
[54] Väisälä, J.: The free quasiworld. Freely quasiconformal and related maps in Banach spaces. -In: Quasiconformal geometry and dynamics (Lublin, 1996), Banach Center Publ. 48, Polish Academy of Sciences, Warsaw, 1999, 55-118. · Zbl 0934.30018
[55] Van Dung, N., and V. T. L. Hang: On regular semimetric spaces having strong triangle functions. -J. Fixed Point Theory Appl. 19:3, 2017, 2069-2079. · Zbl 1491.54072
[56] Wilson, W. A.: On semi-metric spaces. -Amer. J. Math. 53, 1931, 361-373. · JFM 57.0735.01
[57] Received 24 March 2021 • First revised received 18 October 2021
[58] Evgeniy Petrov Institute of Applied Mathematics and Mechanics of the NAS of Ukraine Dobrovolskogo str. 1, 84100 Slovyansk, Ukraine eugeniy.petrov@gmail.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.