×

A Beilinson-Bernstein theorem for analytic quantum groups. I. (English) Zbl 1497.17017

Summary: In this two-part paper, we introduce a \(p\)-adic analytic analogue of Backelin and Kremnizer’s construction of the quantum flag variety of a semisimple algebraic group, when \(q\) is not a root of unity and \(\vert q-1\vert<1\). We then define a category of \(\lambda \)-twisted \(D\)-modules on this analytic quantum flag variety. We show that when \(\lambda\) is regular and dominant and when the characteristic of the residue field does not divide the order of the Weyl group, the global section functor gives an equivalence of categories between the coherent \(\lambda \)-twisted \(D\)-modules and the category of finitely generated modules over \(\widehat{U_q^\lambda} \), where the latter is a completion of the ad-finite part of the quantum group with central character corresponding to \(\lambda \). Along the way, we also show that Banach comodules over the Banach completion \(\widehat{ \mathcal{O}_q(B) }\) of the quantum coordinate algebra of the Borel can be naturally identified with certain topologically integrable modules.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations

References:

[1] Andersen, H. H.; Polo, P.; Wen, K. X., Representations of quantum algebras, Invent. Math, 104, 1, 1-59 (1991) · Zbl 0724.17012 · doi:10.1007/BF01245066
[2] K. Ardakov, “Equivariant \(\mathcal D\)-modules on rigid analytic spaces,” Astérisque. To appear. · Zbl 1464.14002
[3] Ardakov, K.; Wadsley, S., On irreducible representations of compact \(p\)-adic analytic groups, Ann. Math., 178, 2, 453-557 (2013) · Zbl 1273.22014 · doi:10.4007/annals.2013.178.2.3
[4] Ardakov, K.; Wadsley, S., \( \mathcal{D} \)-modules on rigid analytic spaces II: Kashiwara’s equivalence, J. Algebr. Geom., 27, 4, 647-701 (2018) · Zbl 1423.14169 · doi:10.1090/jag/709
[5] Ardakov, K.; Wadsley, S., \( \mathcal{D} \)-modules on rigid analytic spaces I, J. für die reine und angewandte Math., 747, 221-275 (2019) · Zbl 1439.14064 · doi:10.1515/crelle-2016-0016
[6] Artin, M.; Zhang, J. J., Noncommutative projective schemes, Adv. Math., 109, 2, 228-287 (1994) · Zbl 0833.14002 · doi:10.1006/aima.1994.1087
[7] Atiyah, M. F.; Macdonald, I. G., Introduction to Commutative Algebra (1969), Reading, Mass.-London-Don Mills, Ont.: Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. · Zbl 0175.03601
[8] Backelin, E.; Kremnizer, K., Quantum flag varieties, equivariant quantum \(\mathcal D\)-modules, and localization of quantum groups, Adv. Math., 203, 2, 408-429 (2006) · Zbl 1165.17304 · doi:10.1016/j.aim.2005.04.012
[9] Beilinson, A.; Bernstein, J., Localisation de \(\mathfrak{g} \)-modules, C. R. Acad. Sci. Paris Sér. I Math., 292, 1, 15-18 (1981) · Zbl 0476.14019
[10] Ben-Bassat, O.; Kremnizer, K., Non-Archimedean analytic geometry as relative algebraic geometry, Ann. Fac. Sci. Toulouse Math. (6), 26, 1, 49-126 (2017) · Zbl 1401.14128 · doi:10.5802/afst.1526
[11] Berthelot, P., \({\mathscr D}\)-modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4), 29, 2, 185-272 (1996) · Zbl 0886.14004 · doi:10.24033/asens.1739
[12] Bezrukavnikov, R.; Mirković, I.; Rumynin, D., Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. Math. (2), 167, 3, 945-991 (2008) · Zbl 1220.17009 · doi:10.4007/annals.2008.167.945
[13] Bode, A., Completed tensor products and a global approach to \(p\)-adic analytic differential operators, Math. Proc. Cambridge Philos. Soc., 167, 2, 389-416 (2019) · Zbl 1441.14084 · doi:10.1017/S0305004118000415
[14] Bosch, S.; Güntzer, U.; Remmert, R., Non-Archimedean Analysis (1984), Berlin: Springer-Verlag, Berlin · Zbl 0539.14017 · doi:10.1007/978-3-642-52229-1
[15] Brown, K. A.; Goodearl, K. R., Lectures on Algebraic Quantum Groups (2002), Basel: Birkhäuser Verlag, Basel · Zbl 1027.17010 · doi:10.1007/978-3-0348-8205-7
[16] Chari, V.; Pressley, A., A Guide to Quantum Groups (1994), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0839.17009
[17] Concini, C. De; Procesi, C., Quantum groups. \(In D\)-Modules, Representation Theory, and Quantum Groups, 31-140 (1993), Berlin: Springer, Berlin · Zbl 0795.17005 · doi:10.1007/BFb0073466
[18] Dupré, N., Rigid analytic quantum groups and quantum Arens-Michael envelopes, J. Algebra, 537, 98-146 (2019) · Zbl 1471.16041 · doi:10.1016/j.jalgebra.2019.06.037
[19] N. Dupré, “A Beilinson-Bernstein Theorem for Analytic Quantum Groups. II,” \(p\)-Adic Numbers Ultrametric Anal. Appl. To appear. · Zbl 1497.17018
[20] Lacroix, C. T. Féaux de, Einige Resultate über die topologischen Darstellungen \(p\)-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem \(p\)-adischen Körper, Schriftenreihe Math. Inst. Univ. Münster 3. Ser., 23, x+111 (1999) · Zbl 0963.22009
[21] Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France, 90, 323-448 (1962) · Zbl 0201.35602 · doi:10.24033/bsmf.1583
[22] Grothendieck, A., Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math., 4, 5-228 (1960) · Zbl 0118.36206 · doi:10.1007/BF02684778
[23] Grothendieck, A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math., 11 (1961) · Zbl 0122.16102
[24] Hartshorne, R., Algebraic Geometry (1977), New York-Heidelberg: Springer-Verlag, New York-Heidelberg · Zbl 0367.14001 · doi:10.1007/978-1-4757-3849-0
[25] C. Huyghe, D. Patel, T. Schmidt and M. Strauch, “\( \mathcal{D}^\dagger \)-affinity of formal models of flag varieties,” Math. Res. Lett. To appear. · Zbl 1467.14065
[26] Jantzen, J. C., Lectures on Quantum Groups (1996), Providence, RI: American Math. Society, Providence, RI · Zbl 0842.17012
[27] Jantzen, J. C., Representations of Algebraic Groups (2003), Providence, RI: American Math. Society, Providence, RI · Zbl 1034.20041
[28] Joseph, A., Faithfully flat embeddings for minimal primitive quotients of quantized enveloping algebras, Quantum Deformations of Algebras and Their Representations, 0, 79-106 (1992) · Zbl 0853.17011
[29] Joseph, A., Quantum Groups and Their Primitive Ideals (1995), Berlin Heidelberg: Springer-Verlag, Berlin Heidelberg · Zbl 0808.17004 · doi:10.1007/978-3-642-78400-2
[30] Joseph, A.; Perets, G. S.; Polo, P., Sur l’équivalence de catégories de Beĭlinson et Bernstein, C. R. Acad. Sci. Paris Sér. I Math., 313, 11, 705-709 (1991) · Zbl 0748.14005
[31] Kremnizer, K.; Smith, C., A Tannakian reconstruction theorem for IndBanach spaces (2017)
[32] Kumar, S.; Lauritzen, N.; Thomsen, J. F., Frobenius splitting of cotangent bundles of flag varieties, Invent. Math., 136, 3, 603-621 (1999) · Zbl 0959.14031 · doi:10.1007/s002220050320
[33] Lunts, V. A.; Rosenberg, A. L., Localization for quantum groups, Selecta Math. (N.S.), 5, 1, 123-159 (1999) · Zbl 0928.16020 · doi:10.1007/s000290050044
[34] Lusztig, G., Quantum groups at roots of \(1\), Geom. Dedicata, 35, 1-3, 89-113 (1990) · Zbl 0714.17013 · doi:10.1007/BF00147341
[35] Lyubinin, A., -adic quantum hyperenveloping algebra for (2013)
[36] McConnell, J. C.; Robson, J. C., Noncommutative Noetherian Rings (2001), Providence, RI: American Math. Society, Providence, RI · Zbl 0980.16019
[37] Miličić, D., Localization and Representation Theory of Reductive Lie Groups (2017)
[38] Patel, D.; Schmidt, T.; Strauch, M., Locally analytic representations and sheaves on the Bruhat-Tits building, Alg. Number Theory, 8, 6, 1365-1445 (2014) · Zbl 1298.22021 · doi:10.2140/ant.2014.8.1365
[39] Patel, D.; Schmidt, T.; Strauch, M., Locally analytic representations of GL \((2,l)\) via semistable models of \(\mathbb{P}^1\), J. Inst. Math. Jussieu, 18, 1, 125-187 (2019) · Zbl 1429.22018 · doi:10.1017/S1474748016000396
[40] Rosenberg, A. L., Noncommutative schemes, Compos. Math., 112, 1, 93-125 (1998) · Zbl 0936.14002 · doi:10.1023/A:1000479824211
[41] Schmidt, T., On locally analytic Beilinson-Bernstein localization and the canonical dimension, Math. Z., 275, 3-4, 793-833 (2013) · Zbl 1294.11082 · doi:10.1007/s00209-013-1161-x
[42] Schneider, P., Nonarchimedean Functional Analysis (2002), Berlin: Springer-Verlag, Berlin · Zbl 0998.46044 · doi:10.1007/978-3-662-04728-6
[43] Schneider, P.; Teitelbaum, J., Locally analytic distributions and \(p\)-adic representation theory, with applications to \({\rm GL}_2\), J. Amer. Math. Soc., 15, 2, 443-468 (2002) · Zbl 1028.11071 · doi:10.1090/S0894-0347-01-00377-0
[44] Schneider, P.; Teitelbaum, J., Algebras of \(p\)-adic distributions and admissible representations, Invent. Math., 153, 1, 145-196 (2003) · Zbl 1028.11070 · doi:10.1007/s00222-002-0284-1
[45] Schneider, P.; Teitelbaum, J.; Prasad, D., \(U({\mathfrak{g}})\)-finite locally analytic representations, Represent. Theory, 5, 111-128 (2001) · Zbl 1028.17007 · doi:10.1090/S1088-4165-01-00109-1
[46] Schneiders, J.-P., Quasi-abelian categories and sheaves, Mém. Soc. Math. Fr. (N.S.), 76 (1999) · Zbl 0926.18004
[47] Smith, C., On analytic analogues of quantum groups (2018)
[48] Soibelman, Y., Quantum \(p\)-adic spaces and quantum \(p\)-adic groups, Geometry and Dynamics of Groups and Spaces, 265, 697-719 (2008) · Zbl 1139.12008 · doi:10.1007/978-3-7643-8608-5_18
[49] Tanisaki, T., The Beilinson-Bernstein correspondence for quantized enveloping algebras, Math. Z., 250, 2, 299-361 (2005) · Zbl 1082.17010 · doi:10.1007/s00209-004-0754-9
[50] Tanisaki, T., Differential operators on quantized flag manifolds at roots of unity, II, Nagoya Math. J., 214, 1-52 (2014) · Zbl 1311.14047 · doi:10.1215/00277630-2402198
[51] Wald, C., A \(p\)-Adic Quantum Group and the Quantized \(p\)-Adic Upper Half Plane (2017), Berlin: Humboldt Universität zu Berlin, Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.