×

Recognition study of denatured biological tissues based on multi-scale rescaled range permutation entropy. (English) Zbl 1486.92100

Summary: The recognition of denatured biological tissue is an indispensable part in the process of high intensity focused ultrasound treatment. As a nonlinear method, multi-scale permutation entropy (MPE) is widely used in the recognition of denatured biological tissue. However, the traditional MPE method neglects the amplitude information when calculating the time series complexity. The disadvantage will affect the recognition effect of denatured tissues. In order to solve the above problems, the method of multi-scale rescaled range permutation entropy (MRRPE) is proposed in this paper. The simulation results show that the MRRPE not only includes the amplitude information of the signal when calculating the signal complexity, but also extracts the extreme volatility characteristics of the signal effectively. The proposed method is applied to the HIFU echo signals during HIFU treatment, and the support vector machine (SVM) is used for recognition. The results show that compared with MPE and the multi-scale weighted permutation entropy (MWPE), the recognition rate of denatured biological tissue based on the MRRPE is higher, up to 96.57%, which can better recognize the non-denatured biological tissues and the denatured biological tissues.

MSC:

92C55 Biomedical imaging and signal processing

References:

[1] M. Diana, L. Schiraldi, Y. Y. Liu, R. Memeo, D. Mutter, P. Pessaux, et al., High intensity focused ultrasound (HIFU) applied to hepato-bilio-pancreatic and the digestive system-current state of the art and future perspectives, <i>Hepatobiliary Surg. Nutr.</i>, <b>5</b> (2016), 329. doi: <a href=“http://dx.doi.org/10.21037/hbsn.2015.11.03” target=“_blank”>10.21037/hbsn.2015.11.03</a>.
[2] L, Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming, Ultrason. Sonochem., 29, 420-427 (2016) · doi:10.1016/j.ultsonch.2015.10.019
[3] M. Marinova, M. Rauch, M. Mücke, High-intensity focused ultrasound (HIFU) for pancreatic carcinoma: evaluation of feasibility, reduction of tumour volume and pain intensity, <i>Eur. Radiol.</i>, <b>26</b> (2016), 1-10. doi: <a href=“http://dx.doi.org/10.1007/s00330-016-4239-0” target=“_blank”>10.1007/s00330-016-4239-0</a>.
[4] W, Numerical evaluation of high-intensity focused ultrasound-induced thermal lesions in atherosclerotic plaques, Math. Biosci. Eng., 18, 1154-1168 (2021) · Zbl 1471.92161 · doi:10.3934/mbe.2021062
[5] D, A review of high intensity focused ultrasound in relation to the treatment of renal tumours and other malignancies, Ultrason. Son., 27, 654-658 (2015) · doi:10.1016/j.ultsonch.2015.05.035
[6] N, Frequency considerations for deep ablation with high-intensity focused ultrasound: A simulation study, Med. Phys., 42, 4896-4910 (2015) · doi:10.1118/1.4927060
[7] R, Increasing the HIFU ablation rate through an MRI-guided sonication strategy using shock waves: Feasibility in the in vivo porcine liver, Phys. Med. Biol., 61, 1057-1077 (2016) · doi:10.1088/0031-9155/61/3/1057
[8] H, Influence of temperature-dependent acoustic and thermal parameters and nonlinear harmonics on the prediction of thermal lesion under HIFU ablation, Math. Biosci. Eng., 18, 1340-1351 (2021) · Zbl 1471.92151 · doi:10.3934/mbe.2021070
[9] B. Liu, R. Wang, Z. Peng, L. Qin, Identification of denatured biological tissues based on compressed sensing and improved multiscale dispersion entropy during HIFU treatment, <i>Entropy</i>, <b>22</b> (2020), 944. doi: <a href=“http://dx.doi.org/10.3390/e22090944” target=“_blank”>10.3390/e22090944</a>.
[10] J, Unintended pregnancies with term delivery following ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation of uterine fibroid and adenomyosis, Clin. Exp. Obstet. Gyn., 45, 842-844 (2018) · doi:10.12891/ceog4472.2018
[11] S. Rahimian, J. Tavakkoli, Estimating dynamic changes of tissue attenuation coefficient during high-intensity focused ultrasound treatment, <i>J. Ther. Ultrasound.</i>, <b>1</b> (2013), 14. doi: <a href=“http://dx.doi.org/10.1186/2050-5736-1-14” target=“_blank”>10.1186/2050-5736-1-14</a>.
[12] S. Q. Yan, H. Zhang, B. Liu, H. Tang, S. Y. Qian, Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment, <i>Chin. Phys. B</i>, <b>30</b> (2021), 028704. doi: <a href=“http://dx.doi.org/10.1088/16741056/abcfa7” target=“_blank”>10.1088/16741056/abcfa7</a>.
[13] R. Seip, J. Tavakkoli, R. F. Carlson, A. Wunderlich, N. T. Sanghvi, K. A. Dines, et al., High-intensity focused ultrasound (HIFU) multiple lesion imaging: comparison of detection algorithms for real-time treatment control, in <i>2002</i> <i>IEEE Ultrasonics Symposium</i>, <b>2</b> (2002), 1427-1430. doi: <a href=“http://dx.doi.org/10.1109/ULTSYM.2002.1192564” target=“_blank”>10.1109/ULTSYM.2002.1192564</a>.
[14] T. Shishitani, S. Yoshizawa, S. Umemura, Change in acoustic impedance and sound speed of HIFU-exposed chicken breast muscle, in <i>2010 IEEE International Ultrasonics Symposium</i>, (2010), 1384-1387. doi: <a href=“http://dx.doi.org/10.1109/ULTSYM.2010.5935709” target=“_blank”>10.1109/ULTSYM.2010.5935709</a>.
[15] S. Mobasheri, H. Behnam, P. Rangraz, Radio frequency ultrasound time series signal analysis to evaluate high-intensity focused ultrasound lesion formation status in tissue. <i>J. Med. Signals. Sens.</i>, <b>6</b> (2016), 91. doi: <a href=“http://dx.doi.org/10.4103/2228-7477.181032” target=“_blank”>10.4103/2228-7477.181032</a>.
[16] P. H. Tsui, Y. L. Wan, Effects of fatty infiltration of the liver on the Shannon entropy of ultrasound backscattered signals, <i>Entropy</i>, <b>18</b> (2016), 341. doi: <a href=“http://dx.doi.org/10.3390/e18090341” target=“_blank”>10.3390/e18090341</a>.
[17] M. M. Monfared, H. Behnam, P. Rangraz, High-intensity focused ultrasound thermal lesion detection using entropy imaging of ultrasound radio frequency signal time series, <i>J. Med. Ultrasound.</i>, <b>26</b> (2018), 24. doi: <a href=“http://dx.doi.org/10.4103/JMU.JMU_3_17” target=“_blank”>10.4103/JMU.JMU_3_17</a>.
[18] C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time series, <i>Phys. Rev. Lett.</i>, <b>88</b> (2002), 174102. doi: <a href=“http://dx.doi.org/10.1103/PhysRevLett.88.174102” target=“_blank”>10.1103/PhysRevLett.88.174102</a>.
[19] Y. Gao, F. Villecco, M. Li, W. Song, Multi-scale permutation entropy based on improved LMD and HMM for rolling bearing diagnosis, <i>Entropy</i>, <b>19</b> (2017), 176. doi: <a href=“http://dx.doi.org/10.3390/e19040176” target=“_blank”>10.3390/e19040176</a>.
[20] W. P. Yao, T. B. Liu, J. F. Dai, J. Wang, Multiscale permutation entropy analysis of electroencephalogram, <i>Acta. Phys. Sin</i>, <b>63</b> (2014), 078704. doi: <a href=“http://dx.doi.org/10.7498/aps.63.078704” target=“_blank”>10.7498/aps.63.078704</a>.
[21] J, Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy, Math. Biosci. Eng., 17, 2592-2615 (2020) · Zbl 1470.92060 · doi:10.3934/mbe.2020142
[22] B. Liu, W. P. Hu, X. Zou, Y. J. Ding, S. Y. Qian, Recognition of denatured biological tissue based on variational mode decomposition and multi-scale permutation entropy, <i>Acta. Phys. Sin</i>, <b>68</b> (2019), 028702. doi: <a href=“http://dx.doi.org/10.7498/aps.68.20181772” target=“_blank”>10.7498/aps.68.20181772</a>.
[23] S, Time series analysis using composite multiscale entropy, Entropy, 15, 1069-1084 (2013) · Zbl 1298.65020 · doi:10.3390/e15031069
[24] S, Analysis of complex time series using refined composite multiscale entropy, Phys. Lett. A, 378, 1369-1374 (2014) · Zbl 1323.94061 · doi:10.1016/j.physleta.2014.03.034
[25] D, Permutation entropy: Influence of amplitude information on time series classification performance, Math. Biosci. Eng., 16, 6842-6857 (2019) · Zbl 1470.92133 · doi:10.3934/mbe.2019342
[26] B. Fadlallah, B. Chen, A. Keil, J. Principe, Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information, <i>Phys. Rev. E</i>, <b>87</b> (2013) 022911. doi: <a href=“http://dx.doi.org/10.1103/PhysRevE.87.022911” target=“_blank”>10.1103/PhysRevE.87.022911</a>.
[27] B. Liu, S. Qian, W. Hu, Identification of denatured biological tissues based on time-frequency entropy and refined composite multi-scale weighted permutation entropy during HIFU treatment, <i>Entropy</i>, <b>21</b> (2019), 666. doi: <a href=“http://dx.doi.org/10.3390/e21070666” target=“_blank”>10.3390/e21070666</a>.
[28] J. C. Zhang, W. K.Ren, N. D. Jin, Rescaled range permutation entropy: a method for quantifying the dynamical complexity of extreme volatility in chaotic time series, <i>Chinese. Phys. Lett.</i>, <b>37</b> (2020), 090501. doi: <a href=“http://dx.doi.org/10.1088/0256-307X/37/9/090501” target=“_blank”>10.1088/0256-307X/37/9/090501</a>.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.