×

The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities. (English. French summary) Zbl 1487.35400

Summary: In this article, we use the topological degree based on the abstract Hammerstein equation to investigate the existence of weak solutions for a class of elliptic Dirichlet boundary value problems involving the fractional \(p(x)\)-Laplacian operator with discontinuous nonlinearities. The appropriate functional framework for this problems is the fractional Sobolev space with variable exponent.

MSC:

35R11 Fractional partial differential equations
35A16 Topological and monotonicity methods applied to PDEs
35J25 Boundary value problems for second-order elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
47H11 Degree theory for nonlinear operators

References:

[1] A. Abbassi, C. Allalou and A. Kassidi, “Existence of weak solutions for nonlinear p-elliptic problem by topological degree”, Nonlinear Dyn. Syst. Theory, vol. 20, no. 3, pp. 229-241, 2020. · Zbl 1454.35192
[2] A. Abbassi, C. Allalou and A. Kassidi, “Topological degree methods for a Neumann problem governed by nonlinear elliptic equation”, Moroccan J. of Pure and Appl. Anal. (MJPAA), vol. 6, no. 2, pp. 231-242, 2020. · Zbl 1454.35192
[3] C. Allalou, A. Abbassi and A. Kassidi, “The discontinuous nonlinear Dirichlet boundary value problem with p-Laplacian”, Azerb. J. Math., vol. 11, no. 2, pp. 60-77, 2021. · Zbl 1485.35242
[4] A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications‘”, J. Functional Analysis, vol. 14, no. 4, pp. 349-381, 1973. · Zbl 0273.49063
[5] D. Arcoya and M. Calahorrano, “Some discontinuous problems with a quasilinear operator”, J. Math. Anal. Appl., vol. 187, no. 3, pp. 1059-1072, 1994. · Zbl 0815.35018
[6] G. Autuori and P. Pucci, “Elliptic problems involving the fractional Laplacian in R^N”, J. Differential Equations, vol. 255, no. 8, pp. 2340-2362, 2013. · Zbl 1284.35171
[7] E. Azroul, A. Benkirane and M. Shimi, “Eigenvalue problems involving the fractional p(x)- Laplacian operator”, Adv. Oper. Theory, vol. 4, no. 2, pp. 539-555, 2019. · Zbl 1406.35456
[8] A. Bahrouni and V. D. R ̆adulescu, “On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent”, Discrete Contin. Dyn. Syst. Ser. S, vol. 11, no. 3, pp. 379-389, 2018. · Zbl 1374.35158
[9] A. Bahrouni, V. D. Rădulescu and P. Winkert, “Robin fractional problems with symmetric variable growth”, J. Math. Phys., vol. 61, no. 10, 101503, 14 pages, 2020. · Zbl 1455.35087
[10] A. Bahrouni and K. Ho, “Remarks on eigenvalue problems for fractional p(·)-Laplacian”, Asymptot. Anal., vol. 123, no. 1-2, pp. 139-156, 2021. · Zbl 1473.35381
[11] G. Barletta, A. Chinnì and D. O’Regan, “Existence results for a Neumann problem involving the p(x)-Laplacian with discontinuous nonlinearities”, Nonlinear Anal. Real World Appl., vol. 27, pp. 312-325, 2016. · Zbl 1332.35128
[12] J. Berkovits and M. Tienari, “Topological degree theory for some classes of multis with applications to hyperbolic and elliptic problems involving discontinuous nonlinearities”, Dynam. Systems Appl., vol. 5, no. 1, pp. 1-18, 1996. · Zbl 0851.47044
[13] H. Brezis and E. H. Lieb, “A relation between pointwise convergence of functions and convergence of functionals”, Proc. Amer. Math. Soc., vol. 88, no. 3, pp. 486-490, 1983. · Zbl 0526.46037
[14] F. E. Browder, “Fixed point theory and nonlinear problems”, Bull. Amer. Math. Soc. (N.S.), vol. 9, no. 1, pp. 1-39, 1983. · Zbl 0533.47053
[15] X. Cabré and Y. Sire, “Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates”, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 31, no. 1, pp. 23-53, 2014. · Zbl 1286.35248
[16] K. C. Chang, “The obstacle problem and partial differential equations with discontinuous nonlinearities”, Comm. Pure Appl. Math., vol. 33, no. 2, pp. 117-146, 1980. · Zbl 0405.35074
[17] Y. Chen, S. Levine and M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., vol. 66, no. 4, pp. 1383-1406, 2006. · Zbl 1102.49010
[18] D. O’Regan, Y. J. Cho and Y.-Q. Chen, Topological degree theory and applications, Series in Mathematical Analysis and Applications, 10, Boca Raton: Chapman & Hall/CRC, 2006. · Zbl 1095.47001
[19] E. B. Choi, J.-M. Kim and Y.-H. Kim, “Infinitely many solutions for equations of p(x)-Laplace type with the nonlinear Neumann boundary condition”, Proc. Roy. Soc. Edinburgh Sect. A, vol. 148, no. 1, pp. 1-31, 2018. · Zbl 1391.35163
[20] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Heidelberg: Springer, 2011. · Zbl 1222.46002
[21] G. G. dos Santos, G. M. Figueiredo and R. G. Nascimento, “Existence and behavior of positive solution for a problem with discontinuous nonlinearity in R^N via a nonsmooth penalization”, Z. Angew. Math. Phys., vol. 71, no. 2, Paper No. 71, 18 pages, 2020. · Zbl 1437.35385
[22] X. Fan and D. Zhao, “On the spaces L^p(x)(Ω) and W^m,p(x)(Ω)”, J. Math. Anal. Appl., vol. 263, no. 2, pp. 424-446, 2001. · Zbl 1028.46041
[23] M. Ait Hammou, E. Azroul and B. Lahmi, “Topological degree methods for a strongly nonlinear p(x)-elliptic problem”, Rev. Colombiana Mat., vol. 53, no. 1, pp. 27-39, 2019. · Zbl 1423.35104
[24] S. Heidarkhani and F. Gharehgazlouei, “Multiplicity of elliptic equations involving the p-Laplacian with discontinuous nonlinearities”, Complex Var. Elliptic Equ., vol. 62, no. 3, pp. 413-429, 2017. · Zbl 1370.34035
[25] K. Ho and Y.-H. Kim, “A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional p(·)-Laplacian”, Nonlinear Anal., vol. 188, pp. 179-201, 2019. · Zbl 1425.35041
[26] U. Kaufmann, J. D. Rossi and R. Vidal, “Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians”, Electron. J. Qual. Theory Differ. Equ., Paper no. 76, 10 pages, 2017. · Zbl 1413.46035
[27] I. H. Kim and Y.-H. Kim, “Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents”, Manuscripta Math., vol. 147, no. 1-2, pp. 169-191, 2015. · Zbl 1322.35009
[28] I. H. Kim, J.-H. Bae and Y.-H. Kim, “Existence of a weak solution for discontinuous elliptic problems involving the fractional p(·)-Laplacian”, J. Nonlinear Convex Anal., vol. 21, no. 1, pp. 89-103, 2020. · Zbl 1464.35397
[29] I.-S. Kim, “Topological degree and applications to elliptic problems with discontinuous non-linearity”, J. Nonlinear Sci. Appl., vol. 10, no. 2, pp. 612-624, 2017. · Zbl 1412.47024
[30] O. Kováčik and J. Rákosník, “On spaces L^p(x) and W^k,p(x)”, Czechoslovak Math. J., vol. 41 (116), no. 4, pp. 592-618, 1991. · Zbl 0784.46029
[31] J. Leray and J. Schauder, “Topologie et équations fonctionnelles”, Ann. Sci. École Norm. Sup. (3), vol. 51, pp. 45-78, 1934. · JFM 60.0322.02
[32] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris: Dunod; Gauthier-Villars, 1969. · Zbl 0189.40603
[33] R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics approach”, Phys. Rep., vol. 339, no. 1, 77 pages, 2000. · Zbl 0984.82032
[34] E. Di Nezza, G. Palatucci and E. Valdinoci, “Hitchhiker’s guide to the fractional Sobolev spaces”, Bull. Sci. Math., vol. 136, no. 5, pp. 521-573, 2012. · Zbl 1252.46023
[35] R. Servadei and E. Valdinoci, “Mountain pass solutions for non-local elliptic operators”, J. Math. Anal. Appl, vol. 389, no. 2, pp. 887-898, 2012. · Zbl 1234.35291
[36] J. Simon, “Régularité de la solution d’une équation non linéaire dans R^N ”, Journées d’Analyse Non Linéaire (Proc. Conf., Besançon, 1977), pp. 205-227, Lecture Notes in Math., 665, Berlin: Springer, 1978. · Zbl 0402.35017
[37] I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Translations of Mathematical Monographs, 139, Providence, Rhode Island: American Mathematical Society, 1994. · Zbl 0822.35001
[38] I. V. Skrypnik, “Nonlinear elliptic equations of higher order”, (Russian) Gamoqeneb. Math. Inst. Sem. Mohsen. Anotacie., no. 7, pp. 51-52, 1973. · Zbl 0296.35032
[39] K. Teng and X. Wu, “Multiplicity results for semilinear resonant elliptic problems with discontinuous nonlinearities”, Nonlinear Anal., vol. 68, no. 6, pp. 1652-1667, 2008. · Zbl 1137.35381
[40] K. Teng, “Multiple solutions for semilinear resonant elliptic problems with discontinuous nonlinearities via nonsmooth double linking theorem‘”, J. Global Optim., vol. 46, no. 1, pp. 89-110, 2010. · Zbl 1205.34023
[41] C. Wang and Y. Huang, “Multiple solutions for a class of quasilinear elliptic problems with discontinuous nonlinearities and weights”, Nonlinear Anal., vol. 72, no. 11, pp. 4076-4081, 2010. · Zbl 1189.35352
[42] Z. Yuan and J. Yu, “Existence of solutions for Dirichlet elliptic problems with discontinuous nonlinearity”, Nonlinear Anal., vol. 197, 111848, 17 pages, 2020. · Zbl 1440.35169
[43] C. Zhang and X. Zhang, “Renormalized solutions for the fractional p(x)-Laplacian equation with L^1 data”, Nonlinear Anal., vol. 190, 111610, 15 pages, 2020. · Zbl 1433.35156
[44] D. Zhao, W. J. Qiang and X. L. Fan, “On generalized Orlicz spaces L^p(x)(Ω)”, J. Gansu Sci., vol. 9, no. 2, pp. 1-7, 1997.
[45] E. Zeidler, Nonlinear functional analysis and its applications II/B, nonlinear monotone operators, New York: Springer, 1990. · Zbl 0684.47029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.