×

The deformation \(L_\infty\) algebra of a Dirac-Jacobi structure. (English) Zbl 1494.53091

This article constructs an \(L_\infty\)-algebra governing deformations of a Dirac-Jacobi structure within a fixed Courant-Jacobi algebroid.
Dirac structures are involutive Lagrangian subbundles of Courant algebroids, and are useful in describing and unifying important geometric structures such as (pre)symplectic and Poisson structures, foliations, complex and generalized complex structures.
Dirac-Jacobi structures generalize Dirac structures and unify contact, Jacobi, and generalized contact structures (generalized complex structures in odd-dimensional manifolds). They are involutive Lagrangian subbundles of Courant-Jacobi algebroids, which in turn generalize Courant algebroids. Dirac-Jacobi structures can be thought of as “contact” versions of Dirac structures, via the line bundle approach [L. Vitagliano, J. Symplectic Geom. 16, No. 2, 485–561 (2018; Zbl 1397.53094)] in which one sees contact (respectively Jacobi) geometry as symplectic (respectively Poisson) geometry on the gauge (or Atiyah) algebroid \(DL\) of a line bundle \(L\). This line bundle approach to Courant-Jacobi algebroids and Dirac-Jacobi structures is reviewed in Section 2 of the paper.
The construction of the deformation \(L_\infty\)-algebra of a Dirac-Jacobi structure is inspired by a similar construction of a \(L_\infty\)-algebra for Dirac structures [Y. Frégier and M. Zambon, Compos. Math. 151, No. 9, 1763–1790 (2015; Zbl 1383.17009); D. Roytenberg, Lett. Math. Phys. 61, No. 2, 123–137 (2002; Zbl 1027.53104)]. It uses a graded-geometric interpretation of Courant-Jacobi algebroids and of Dirac-Jacobi structures, and an auxiliary choice of a complementary almost Dirac-Jacobi structure. Sections 3 and 4 of the paper carefully describe the relevant graded (contact) geometry, and use it to construct a curved \(L_\infty\)-algebra associated with a split Courant-Jacobi Lie algebroid, which fully encodes the Courant-Jacobi algebroid structure. This is a cubic curved \(L_\infty\)-algebra, meaning that it only has 0-ary, unary, binary and ternary brackets. In section 5, this description is in turn used to construct, using a complementary almost Dirac-Jacobi structure, the deformation \(L_\infty\)-algebra of a Dirac-Jacobi structure. It is a cubic \(L_\infty\)-algebra, meaning that it only has unary, binary and ternary brackets.
There is one main difference with the case of Dirac structures. To show that the resulting \(L_\infty\)-structure does not depend (up to canonical \(L_\infty\)-isomorphisms) on the choice of complement, the existing proof for the Dirac case used a spinorial description of Dirac structures [M. Gualtieri et al., Int. Math. Res. Not. 2020, No. 14, 4295–4323 (2020; Zbl 1486.53097)], which is not available for Dirac-Jacobi structures. Instead, in Section 5.2 the author proves the independence (up to canonical \(L_\infty\)-isomorphisms) of the deformation \(L_\infty\)-algebra of a Dirac-Jacobi structures via the equivalence of higher derived brackets [A. S. Cattaneo and F. Schätz, J. Pure Appl. Algebra 212, No. 11, 2450–2460 (2008; Zbl 1177.53073)], which is recalled in the appendix of the paper. This provides also an alternative proof for the Dirac case.
Finally, Theorem 5.7 shows that the Maurer-Cartan elements of the deformation \(L_\infty\)-algebra of a Dirac-Jacobi structure \(A\) encode “small” deformations of \(A\) within the fixed Courant-Jacobi algebroid. In Section 5.4, there is a description of infinitesimal deformations of Dirac-Jacobi structures, and of a Kuranishi map \(K\). If \(K(w)\neq 0\) for an infinitesimal deformation \(w\), then \(w\) is obstructed (it cannot be extended to a smooth deformation).

MSC:

53D10 Contact manifolds (general theory)
53D17 Poisson manifolds; Poisson groupoids and algebroids
58H15 Deformations of general structures on manifolds
17B70 Graded Lie (super)algebras
58A50 Supermanifolds and graded manifolds
17B63 Poisson algebras

References:

[1] Antunes, P.; Nunes da Costa, J. M., Split Courant algebroids as \(L_\infty \)-structures, J. Geom. Phys., 155, Article 103790 pp. (2020) · Zbl 1446.53064
[2] Blaga, A. M.; Salazar, M. A.; Tortorella, A. G.; Vizman, C., Contact dual pairs, Int. Math. Res. Not. IMRN, 2020, 22, 8818-8877 (2020) · Zbl 1466.53086
[3] Bocharov, A. V., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Transl. Math. Monogr., vol. 182 (1999), American Mathematical Society · Zbl 0911.00032
[4] Bruce, A. J.; Tortorella, A. G., Kirillov structures up to homotopy, Differential Geom. Appl., 48, 72-86 (2016) · Zbl 1347.53068
[5] Cattaneo, A.; Schätz, F., Equivalences of higher derived brackets, J. Pure Appl. Algebra, 212, 11, 2450-2460 (2008) · Zbl 1177.53073
[6] Chen, Z.; Liu, Z.; Sheng, Y., E-Courant algebroids, Int. Math. Res. Not. IMRN, 2010, 22, 4334-4376 (2010) · Zbl 1211.53096
[7] Chen, Z.; Liu, Z.-J., Omni-Lie algebroids, J. Geom. Phys., 60, 5, 799-808 (2010) · Zbl 1210.17003
[8] Cueca, M., The geometry of graded cotangent bundles, J. Geom. Phys., 161, Article 104055 pp. (2021) · Zbl 1457.58002
[9] Nunes da Costa, J. M.; Clemente-Gallardo, J., Dirac structures for generalized Lie bialgebroids, J. Phys. A, 37, 7, 2671-2692 (2004) · Zbl 1086.53099
[10] Das, A., Contact Courant algebroids and \(L_\infty \)-algebras, J. Geom. Phys., 163, 104127-104144 (2021) · Zbl 1466.53035
[11] Fiorenza, D.; Manetti, M., \( L_\infty\) structures on mapping cones, Algebra Number Theory, 1, 3, 301-330 (2007) · Zbl 1166.17010
[12] Frégier, Y.; Zambon, M., Simultaneous deformations and Poisson geometry, Compos. Math., 151, 9, 1763-1790 (2015) · Zbl 1383.17009
[13] Geudens, S.; Tortorella, A. G.; Zambon, M., Deformations of symplectic foliations (2021), preprint
[14] Goto, R., Deformations of generalized complex and generalized Kähler structures, J. Differential Geom., 84, 3, 525-560 (2010) · Zbl 1201.53085
[15] Grabowski, J., Graded contact manifolds and contact Courant algebroids, J. Geom. Phys., 68, 27-58 (2013) · Zbl 1280.53070
[16] Grabowski, J.; Marmo, G., Jacobi structures revisited, J. Phys. A, 34, 49, 10975-10990 (2001) · Zbl 0998.53054
[17] Grabowski, J.; Marmo, G., The graded Jacobi algebras and (co) homology, J. Phys. A, 36, 1, 161 (2002) · Zbl 1039.53090
[18] Gualtieri, M., Generalized complex geometry, Ann. of Math., 174, 75-123 (2011) · Zbl 1235.32020
[19] Gualtieri, M.; Matviichuk, M.; Scott, G., Deformation of Dirac structures via \(L_\infty\) algebras, Int. Math. Res. Not. IMRN, 2020, 4295-4323 (2020) · Zbl 1486.53097
[20] Iglesias, D.; Marrero, J. C., Generalized Lie bialgebroids and Jacobi structures, J. Geom. Phys., 40, 2, 176-200 (2001) · Zbl 1001.17025
[21] Iglesias-Ponte, D.; Wade, A., Contact manifolds and generalized complex structures, J. Geom. Phys., 53, 3, 249-258 (2005) · Zbl 1075.53081
[22] Keller, F.; Waldmann, S., Formal deformations of Dirac structures, J. Geom. Phys., 57, 3, 1015-1036 (2007) · Zbl 1112.58018
[23] Kirillov, A. A., Local Lie algebras, Russian Math. Surveys, 31, 4, 55 (1976) · Zbl 0357.58003
[24] Kosmann-Schwarzbach, Y., From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble), 46, 5, 1243-1274 (1996) · Zbl 0858.17027
[25] Kosmann-Schwarzbach, Y., Quasi, twisted, and all that... in Poisson geometry and Lie algebroid theory, (Marsden, J. E.; Ratiu, T. S., The Breadth of Symplectic and Poisson Geometry. The Breadth of Symplectic and Poisson Geometry, Progr. Math., vol. 232 (2005), Birkhäuser: Birkhäuser Boston) · Zbl 1079.53126
[26] Lada, T.; Markl, M., Strongly homotopy Lie algebras, Commun. Algebra, 23, 6, 2147-2161 (1995) · Zbl 0999.17019
[27] Lê, H. V.; Oh, Y.-G.; Tortorella, A. G.; Vitagliano, L., Deformations of coisotropic submanifolds in Jacobi manifolds, J. Symplectic Geom., 16, 4, 1051-1116 (2018) · Zbl 1462.53072
[28] Lê, H. V.; Tortorella, A. G.; Vitagliano, L., Jacobi bundles and the BFV-complex, J. Geom. Phys., 121, 347-377 (2017) · Zbl 1376.53102
[29] Li-Bland, D., AV-Courant algebroids and generalized CR structures, Canad. J. Math., 63, 4, 938-960 (2011) · Zbl 1223.53061
[30] Lichnerowicz, A., Les variétés de Jacobi et leurs algebres de Lie associées, J. Math. Pures Appl., 57, 453-488 (1978) · Zbl 0407.53025
[31] Liu, Z.-J.; Weinstein, A.; Xu, P., Manin triples for Lie bialgebroids, J. Differential Geom., 45, 3, 547-574 (1997) · Zbl 0885.58030
[32] Mackenzie, K. C.H., General Theory of Lie Groupoids and Lie Algebroids, London Math. Soc. Lecture Note Ser., vol. 213 (2005), Cambridge University Press · Zbl 1078.58011
[33] Mehta, R. A., Supergroupoids, double structures, and equivariant cohomology (2006), UC Berkeley, eprint
[34] Mehta, R. A., Differential graded contact geometry and Jacobi structures, Lett. Math. Phys., 103, 7, 729-741 (2013) · Zbl 1294.53073
[35] Oh, Y.-G.; Park, J.-S., Deformations of coisotropic submanifolds and strong homotopy Lie algebroids, Invent. Math., 161, 2, 287-360 (2005) · Zbl 1081.53066
[36] Poon, Y. S.; Wade, A., Generalized contact structures, J. Lond. Math. Soc., 83, 2, 333-352 (2011) · Zbl 1226.53078
[37] Roytenberg, D., Courant algebroids, derived brackets and even symplectic supermanifolds (1999), UC Berkeley, e-print
[38] Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, Contemp. Math., 315, 169-186 (2002) · Zbl 1036.53057
[39] Roytenberg, D., Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys., 61, 2, 123-137 (2002) · Zbl 1027.53104
[40] Rubtsov, V. N., The cohomology of the Der-complex, Uspekhi Mat. Nauk, 35, 4, 209-210 (1980) · Zbl 0453.58024
[41] Schätz, F.; Zambon, M., Deformations of pre-symplectic structures: a Dirac geometry approach, SIGMA Symmetry Integrability Geom. Methods Appl., 14, 128-139 (2018) · Zbl 1434.53089
[42] Schätz, F.; Zambon, M., Deformations of pre-symplectic structures and the Koszul \(L_\infty \)-algebra, Int. Math. Res. Not. IMRN, 2020, 14, 4191-4237 (2020) · Zbl 1485.53097
[43] Schnitzer, J.; Tortorella, A. G., Weak dual pairs in Dirac-Jacobi geometry (2021), preprint
[44] Vaintrob, A. Yu., Lie algebroids and homological vector fields, Russian Math. Surveys, 52, 2, 428-429 (1997) · Zbl 0955.58017
[45] Vitagliano, L., Vector bundle valued differential forms on \(\mathbb{N} Q\)-manifolds, Pacific J. Math., 283, 2, 449-482 (2016) · Zbl 1345.53086
[46] Vitagliano, L., Dirac-Jacobi bundles, J. Symplectic Geom., 16, 2, 485-561 (2018) · Zbl 1397.53094
[47] Vitagliano, L.; Wade, A., Generalized contact bundles, C. R. Math., 354, 3, 313-317 (2016) · Zbl 1381.53158
[48] Voronov, Th., Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra, 202, 1-3, 133-153 (2005) · Zbl 1086.17012
[49] Wade, A., Conformal Dirac structures, Lett. Math. Phys., 53, 4, 331-348 (2000) · Zbl 0982.53069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.