×

Cubic nonlinear differential system, their periodic solutions and bifurcation analysis. (English) Zbl 1525.34065

MSC:

34C25 Periodic solutions to ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34B05 Linear boundary value problems for ordinary differential equations
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34K18 Bifurcation theory of functional-differential equations

References:

[1] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields, <i>Springer</i>, (1983), 353-420. · Zbl 0515.34001
[2] Z. Wang, D. Liu, M. Song, Existence of three periodic solutions for a quasilinear periodic boundary value problem, <i>AIMS Math.</i>, <b>5</b> (2020), 6061-6072. · Zbl 1484.34088
[3] J. Laszlo, M. V. Panne, E. Fiume, <i>Limit cycle control and its application to the animation of balancing and walking</i>, Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 1996,155-162.
[4] N. G. Lloyd, <i>Small amplitude limit cycles of polynomial differential equations</i>, In: Ordinary differential equations and operators, 1982,346-357. · Zbl 0527.34035
[5] N. G. Lloyd, The number of periodic solutions of the equation \(Z^{^{\cdot }} = z^n+p_{_1}(s)z^{n-1}+P_2(s)z^{n-2}+...+P_n(s)\), <i>Proc. London Math. Soc.</i>, <b>27</b> (1973), 667-700. · Zbl 0273.34042
[6] A. Gasull, J. Llibre, Limit cycles for a class of Abel equations, <i>J. Math. Anal.</i>, <b>21</b> (1990), 1235-1244. · Zbl 0732.34025
[7] L. Neto, On the number of solutions of the equations \(\frac{dX}{ds} = \sum_{j = 0}^nP_j\left(s\right) s^{^{\prime }} 0\leq s\leq 1\) for which \(X\left(0\right) = X\left(1\right)\), <i>Invent. Math.</i>, <b>59</b> (1980), 67-76. · Zbl 0448.34012
[8] N. G. Lloyd, <i>Limit cycles of certain polynomial systems</i>, In: Non-linear functional analysis and its applications, NATO ASI Series, <b>173</b> (1986), 317-326. · Zbl 0587.34026
[9] S. Akram, A. Nawaz, T. Abdeljawad, A. Ghaffar, K. S. Nisar, Calculation of focal values for first-order non-autonomous equation with algebraic and trigonometric coefficients, <i>Open Phys.</i>, <b>18</b> (2020), 738-750.
[10] S. Akram, A. Nawaz, N. Yasmin, H. Kalsoom, Y. M. Chu, Periodic solutions for first order cubic non-autonomous differential equation with bifurcation analysis, <i>J. Taibah Univ. Sci.</i>, <b>14</b> (2020), 1208-1217.
[11] D. Hilbert, Mathematical problems, <i>Bull. Amer. Math. Soc.</i>, <b>8</b> (1902), 437-479. · JFM 33.0976.07
[12] M. A. M. Alwash, N. G. Lloyd, Non-autonomous equation related to polynomial two-dimensional system, <i>Proceed. Royal Soc. Edin.</i>, <b>5</b> (1987), 129-152. · Zbl 0618.34026
[13] S. Akram, A. Nawaz, N. Yasmin, A. Ghaffar, D. Baleanu, Periodic solutions of some classes of one dimensional non-autonomous system, <i>Front. Phys.</i>, <b>8</b> (2020), 264.
[14] S. Akram, A. Nawaz, H. Kalsoom, M. Idrees, Y. M. Chu, Existence of multiple periodic solutions for cubic nonautonomous differential equation, <i>Math. Prob. Eng.</i>, (2020), 7618097. · Zbl 1459.34101
[15] S. Akram, A. Nawaz, M. B. Riaz, M. Rehman, Periodic solutions for two dimensional quartic nonautonomous differential equation, <i>Intell. Autom. Soft Comput.</i>, (2021), 019767.
[16] N. Yasmin, <i>Closed orbits of certain two dimensional cubic systems (Ph.D. thesis)</i>, University College of Wales Aberystwyth, United Kingdom, 1989, 1-169.
[17] G. Nallappan, S. Sabarathinam, Z. Guisheng, Y. Qiang, Dynamical analysis and sampled-data stabilization of memristor-based chuas circuits, <i>IEEE Access</i>, (2021), 25648-25658.
[18] M. A. M. Alwash, Periodic solutions of polynomial non-autonomous differential equations, <i>Electron. J. Differ. Eq.</i>, <b>2005</b> (2005), 1-8. · Zbl 1075.34514
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.