×

Periodic-background solutions of Kadomtsev-Petviashvili I equation. (English) Zbl 1509.35267

Summary: A systematic method to obtain exact solutions of the Zakharov-Shabat spectral problems with Jacobi elliptic function potentials is constructed by using the Baker-Akhiezer functions which appear in the study quasi-periodic solutions. As a result, periodic-background lump (PB-lump for short) solutions of the Kadomtsev-Petviashvili I (KPI) equation are constructed. Like lump solutions, PB-lump solutions are localized in the xy-plane and propagate at constant velocities. Different from lump solutions, which are rational solutions and tend to a constant amplitude when \(x\) and \(y\) are large, PB-lump solutions are composed of polynomials, elliptic functions and other special functions, and tend to the periodic background when \(x\) and \(y\) are large. What’s more, the amplitude of the crest for the PB-lump solution changes periodically as it propagates on the xy-plane. The trajectories of the PB-lumps for the KPI equation are presented on the basis of the formal series expansion technique. As an illustration, both first- and second-order PB-lumps and their exact formulas are obtained.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
35K35 Initial-boundary value problems for higher-order parabolic equations
35C08 Soliton solutions
Full Text: DOI

References:

[1] Ablowitz, MJ; Segur, H., On the evolution of packets of water waves, J. Fluid Mech., 92, 691-715 (1981) · Zbl 0413.76009 · doi:10.1017/S0022112079000835
[2] Gilbert, G., The Kadomtsev-Petviashvili equations and fundamental string theory, Commun. Math. Phys., 117, 331-348 (1988) · Zbl 0694.35175 · doi:10.1007/BF01223595
[3] Satsuma, J., \(N\)-soliton solution of the two-dimensional Korteweg-de Veris equation, J. Phys. Soc. Japan, 40, 286-290 (1976) · Zbl 1334.35296 · doi:10.1143/JPSJ.40.286
[4] Freeman, NC; Nimmo, JJC, Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations, Phys. Lett. A, 95, 1-3 (1983) · doi:10.1016/0375-9601(83)90764-8
[5] Manakov, SV; Zakharov, VE; Bordag, LA; Its, AR; Matveev, VB, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A, 63, 205-206 (1977) · doi:10.1016/0375-9601(77)90875-1
[6] Satsuma, J.; Ablowitz, MJ, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 20, 1496-1503 (1983) · Zbl 0422.35014 · doi:10.1063/1.524208
[7] Fokas, AS; Ablowitz, MJ, On the inverse scattering of the time-dependent Schrödinger equation and the associated Kadomtsev-Petviashvili (I) equation, Stud. Appl. Math., 69, 211-228 (1983) · Zbl 0528.35079 · doi:10.1002/sapm1983693211
[8] Ablowitz, MJ; Villarroel, J., Solutions to the time dependent Schrödinger and the Kadomtsev-Petviashvili equations, Phys. Rev. Lett., 78, 570-573 (1997) · Zbl 0944.81013 · doi:10.1103/PhysRevLett.78.570
[9] Villarroel, J.; Ablowitz, MJ, On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation, Commun. Math. Phys., 207, 1-42 (1999) · Zbl 0947.35145 · doi:10.1007/s002200050716
[10] Ablowitz, MJ; Chakravarty, S.; Trubatch, AD; Villarroel, J., A novel class of solutions of the non-stationary Schrödinger and the Kadomtsev-Petviashvili I equations, Phys. Lett. A, 267, 132-146 (2000) · Zbl 0947.35129 · doi:10.1016/S0375-9601(00)00020-7
[11] Ma, WX, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 379, 1975-1978 (2015) · Zbl 1364.35337 · doi:10.1016/j.physleta.2015.06.061
[12] Dubard, P.; Matveev, VB, Multi-rogue waves solutions: from the NLS to the KP-I equation, Nonlinearity, 26, R93-R125 (2013) · Zbl 1286.35226 · doi:10.1088/0951-7715/26/12/R93
[13] Gaillard, P., Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves, J. Math. Phys., 57, 063505 (2016) · Zbl 1344.35123 · doi:10.1063/1.4953383
[14] Yang, JK; Ma, WX, Abundant interaction solutions of the KP equation, Nonlinear Dynam., 89, 1539-1544 (2017) · doi:10.1007/s11071-017-3533-y
[15] Johnson, RS; Thompson, S., A solution of the inverse scattering problem for the Kadomtsev-Petviashvili equation by the method of separation of variables, Phys. Lett. A, 66, 279-281 (2003) · doi:10.1016/0375-9601(78)90236-0
[16] Fokas, AS; Pogrebkov, AK, Inverse scattering transform for the KPI equation on the background of a one-line soliton, Nonlinearity, 16, 771-783 (2003) · Zbl 1033.35097 · doi:10.1088/0951-7715/16/2/323
[17] Tajiri, M.; Fujimura, Y.; Murakami, Y., Resonant interactions between \(Y\)-periodic soliton and algebraic soliton: solutions to the Kadomtsev-Petviashvili equation with positive dispersion, J. Phys. Soc. Japan, 61, 783-790 (1992) · doi:10.1143/JPSJ.61.783
[18] Liu, JG; Zhu, WH; He, Y., Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients Z, Angew. Math. Phys., 72, 154 (2021) · Zbl 1470.35122 · doi:10.1007/s00033-021-01584-w
[19] Tian, Y.; Liu, JG, Study on dynamical behavior of multiple lump solutions and interaction between solitons and lump wave, Nonlinear Dyn., 104, 1507-1517 (2021) · doi:10.1007/s11071-021-06322-5
[20] Liu, JG; Osman, MS, Nonlinear dynamics for different nonautonomous wave structures solutions of a 3D variable-coefficient generalized shallow water wave equation Chinese, J. Phys., 77, 1618-1624 (2022) · Zbl 07851729
[21] Liu, JG; Zhao, H., Multiple rogue wave solutions for the generalized (2+1)-dimensional Camassa-Holm-Kadomtsev-Petviashvili equation Chinese, J. Phys., 77, 985-991 (2022) · Zbl 1540.35101
[22] Zhu, WH; Liu, FY; Liu, JG, Nonlinear dynamics for different nonautonomous wave structures solutions of a (4+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics, Nonlinear Dyn., 108, 4171-4180 (2022) · Zbl 1519.35267 · doi:10.1007/s11071-022-07437-z
[23] Chen, JB; Pelinovsky, DE, Rogue periodic waves of the focusing nonlinear Schrödinger equation, Proc. R. Soc. A., 474, 20170814 (2018) · Zbl 1402.35256 · doi:10.1098/rspa.2017.0814
[24] Chen, JB; Pelinovsky, DE, Rogue periodic waves of the modified KdV equation, Nonlinearity, 31, 1955-1980 (2018) · Zbl 1393.35201 · doi:10.1088/1361-6544/aaa2da
[25] Chen, JB; Pelinovsky, DE; White, RE, Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation, Phys. Rev. E., 100, 052219 (2019) · doi:10.1103/PhysRevE.100.052219
[26] Chen, JB; Pelinovsky, DE, Periodic travelling waves of the modified KdV Equation and rogue waves on the periodic background, J. Nonlinear Sci., 29, 2797-2843 (2019) · Zbl 1427.35226 · doi:10.1007/s00332-019-09559-y
[27] Li, RM; Geng, XG, Rogue periodic waves of the sine-Gordon equation, Appl. Math. Lett., 102, 106147 (2020) · Zbl 1440.35030 · doi:10.1016/j.aml.2019.106147
[28] Feng, BF; Ling, LM; Takahashi, DA, Multi-breather and high-order rogue waves for the nonlinear Schrödinger equation on the elliptic function background, Stud. Appl. Math., 144, 46-101 (2020) · Zbl 1454.35338 · doi:10.1111/sapm.12287
[29] Guo, LJ; Chabchoub, A.; He, JS, Higher-order rogue wave solution to the Kadomtsev-Petviashvili 1 equation, Phys. D, 426, 132990 (2021) · Zbl 1484.35124 · doi:10.1016/j.physd.2021.132990
[30] Cheng, Y.; Li, YS, Constraints of the \(2+1\) dimensional integrable soliton systems, J. Phys. A Math. Gen., 25, 419-431 (1991) · Zbl 0749.35037 · doi:10.1088/0305-4470/25/2/022
[31] Cao, CW; Wu, YT; Geng, XG, Relation between the Kadomtsev-Petviashvili equation and the confocal involutive system, J. Math. Phys., 40, 3948-3970 (1999) · Zbl 0947.35138 · doi:10.1063/1.532936
[32] Dubard, P.; Matveev, VB, Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation, Nat. Hazards Earth Syst. Sci., 11, 667-672 (2011) · doi:10.5194/nhess-11-667-2011
[33] Li, RM; Geng, XG, On a vector long wave-short wave-type model, Stud. Appl. Math., 144, 164-184 (2020) · Zbl 1454.35314 · doi:10.1111/sapm.12293
[34] Geng, XG; Li, RM; Xue, B., A vector general nonlinear Schrödinger equation with \((m + n)\)-components, J. Nonlinear Sci., 30, 991-1013 (2020) · Zbl 1437.35627 · doi:10.1007/s00332-019-09599-4
[35] Wang, X.; Wei, J.; Wang, L.; Zhang, JL, Baseband modulation instability, rogue waves and state transitions in a deformed Fokas-Lenells equation, Nonlinear Dynam., 97, 343-353 (2019) · Zbl 1430.37077 · doi:10.1007/s11071-019-04972-0
[36] Geng, XG; Zeng, X.; Wei, J., The application of the theory of trigonal curves to the discrete coupled nonlinear Schrödinger hierarchy, Ann. Henri Poincaré, 20, 2585-2621 (2019) · Zbl 1421.35335 · doi:10.1007/s00023-019-00798-z
[37] Geng, XG; Zhai, YY; Xue, B., A hierarchy of long wave-short wave type equations: almost-periodic behavior of solutions and their representation, J. Nonlinear Math. Phys., 26, 1-23 (2019) · Zbl 1417.37252 · doi:10.1080/14029251.2019.1544785
[38] Feng, BF; Luo, XD; Ablowitz, MJ; Musslimani, ZH, General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions, Nonlinearity, 31, 5385-5409 (2018) · Zbl 1406.37049 · doi:10.1088/1361-6544/aae031
[39] Deift, P.; Zhou, X., The Deift-Zhou steepest descent method to long-time asymptotics for the Sasa-Satsuma equation, Ann. Math., 2, 137, 295-368 (1993) · Zbl 0771.35042 · doi:10.2307/2946540
[40] Deift, P.; Its, A.; Zhou, X., A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. Math., 146, 148-235 (1997) · Zbl 0936.47028 · doi:10.2307/2951834
[41] Geng, XG; Liu, H., The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation, J. Nonlinear Sci., 28, 739-763 (2018) · Zbl 1390.35325 · doi:10.1007/s00332-017-9426-x
[42] Geng, XG; Wang, KD; Chen, MM, Long-time asymptotics for the spin-1 Gross-Pitaevskii equation, Commun. Math. Phys., 382, 585-611 (2021) · Zbl 1466.35326 · doi:10.1007/s00220-021-03945-y
[43] Liu, H.; Geng, XG; Xue, B., The Deift-Zhou steepest descent method to long-time asymptotics for the Sasa-Satsuma equation, J. Differ. Equ., 265, 5984-6008 (2018) · Zbl 1414.35137 · doi:10.1016/j.jde.2018.07.026
[44] Gui, GL; Liu, Y.; Olver, PJ; Qu, CZ, Wave-breaking and peakons for a modified Camassa-Holm equation, Commun. Math. Phys., 319, 731-759 (2013) · Zbl 1263.35186 · doi:10.1007/s00220-012-1566-0
[45] Qu, CZ, Exact wave-breaking and peakons for a modified Camassa-Holm equation IMA, J. Appl. Math., 62, 283-302 (1999) · Zbl 0936.35039
[46] Qu, CZ; Liu, XC; Liu, Y., Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Commun. Math. Phys., 322, 967-997 (2013) · Zbl 1307.35264 · doi:10.1007/s00220-013-1749-3
[47] Geng, XG; Xue, B., An extension of integrable peakon equations with cubic nonlinearity, Nonlinearity, 22, 1847-1856 (2009) · Zbl 1171.37331 · doi:10.1088/0951-7715/22/8/004
[48] Geng, XG; Xue, B., A three-component generalization of Camassa-Holm equation with \(N\)-peakon solutions, Adv. Math., 226, 827-839 (2011) · Zbl 1207.35254 · doi:10.1016/j.aim.2010.07.009
[49] Wei, J.; Geng, XG; Zeng, X., The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices, Trans. Amer. Math. Soc., 371, 1483-1507 (2019) · Zbl 1403.37078 · doi:10.1090/tran/7349
[50] Geng, XG; Zhai, YY; Dai, HH, Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy, Adv. Math., 263, 123-153 (2014) · Zbl 1304.37046 · doi:10.1016/j.aim.2014.06.013
[51] Shiota, T., Characterization of Jacobian varieties in terms of soliton equations, Invent. Math., 83, 333-382 (1986) · Zbl 0621.35097 · doi:10.1007/BF01388967
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.