×

Periodic waves in the discrete mKdV equation: modulational instability and rogue waves. (English) Zbl 1509.35090

Summary: We derive the traveling periodic waves of the discrete modified Korteweg-de Vries equation by using a nonlinearization method. Modulational stability of the traveling periodic waves is studied from the squared eigenfunction relation and the Lax spectrum. We use numerical approximations to show that, similar to the continuous counterpart, the family of dnoidal solutions is modulationally stable and the family of cnoidal solutions is modulationally unstable. Consequently, algebraic solitons propagate on the dnoidal wave background and rogue waves (spatially and temporally localized events) are dynamically generated on the cnoidal wave background.

MSC:

35C07 Traveling wave solutions
35Q53 KdV equations (Korteweg-de Vries equations)
39A12 Discrete version of topics in analysis

Software:

Matlab
Full Text: DOI

References:

[1] Grimshaw, R., Nonlinear wave equations for the oceanic internal solitary waves, Stud. Appl. Math., 136, 214-237 (2016) · Zbl 1332.35287
[2] Pelinovsky, E.; Talipova, T.; Didenkulova, I.; Didenkulova, E., Interfacial long traveling waves in a two-layer fluid with variable depth, Stud. Appl. Math., 142, 513-527 (2019) · Zbl 1418.35309
[3] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 53, 249-315 (1974) · Zbl 0408.35068
[4] Bronski, J. C.; Johnson, M. A.; Kapitula, T., An index theorem for the stability of periodic travelling waves of Korteweg-de Vries type, Proc. Roy. Soc. Edinburgh Sect. A, 141, 1141-1173 (2011) · Zbl 1230.35118
[5] Deconinck, B.; Nivala, M., The stability analysis of the periodic traveling wave solutions of the mKdV equation, Stud. Appl. Math., 126, 17-48 (2011) · Zbl 1231.35197
[6] Hietarinta, J.; Joshi, N.; Nijhoff, F., Discrete Systems and Integrability (2016), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1362.37130
[7] Ablowitz, M. J.; Ladik, J. F., Nonlinear differential-difference equations and Fourier analysis, J. Math. Phys., 17, 1011-1018 (1976) · Zbl 0322.42014
[8] Chen, J.; Pelinovsky, D. E., Periodic travelling waves of the modified KdV equation and rogue waves on the periodic background, J. Nonlinear Sci., 29, 2797-2843 (2019) · Zbl 1427.35226
[9] Angulo, J.; Natali, F., On the instability of periodic waves for dispersive equations, Differ. Integral Equ., 29, 837-874 (2016) · Zbl 1374.76035
[10] Deconinck, B.; Kapitula, T., On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations, (Hamiltonian Partial Diff. Eq. Appl, Vol. 75 (2015), Fields Institute Communications, Springer: Fields Institute Communications, Springer New York), 285-322 · Zbl 1331.35305
[11] Natali, F.; Le, U.; Pelinovsky, D. E., Periodic waves in the modified fractional Korteweg-de Vries equation, J. Dyn. Differ. Equ., 34, 1601-1640 (2022) · Zbl 1487.76018
[12] Andrade, T. P.; Pastor, A., Orbital stability of one-parameter periodic traveling waves for dispersive equations and applications, J. Math. Anal. Appl., 475, 1242-1275 (2019) · Zbl 1414.35023
[13] Le, U.; Pelinovsky, D., Periodic waves in the modified KdV equation as minimizers of a new variational problem, SIAM J. Appl. Dyn. Syst., 21, 2518-2534 (2022) · Zbl 1503.35200
[14] Bronski, J. C.; Hur, V. M.; Johnson, M. A., Modulational instability in equations of KdV type, (New Approaches To Nonlinear Waves. New Approaches To Nonlinear Waves, Lecture Notes in Phys., vol. 908 (2016), Springer: Springer Cham), 83-133
[15] Chen, J.; Pelinovsky, D. E., Rogue periodic waves in the modified Korteweg-de Vries equation, Nonlinearity, 31, 1955-1980 (2018) · Zbl 1393.35201
[16] Ling, L.; Sun, X., The multi elliptic-breather solutions and their asymptotic analysis for the MKDV equation, Stud. Appl. Math., 150 (2023), in press · Zbl 1529.35441
[17] Deconinck, B.; Upsal, J., Real Lax spectrum implies spectral stability, Stud. Appl. Math., 145, 765-790 (2020) · Zbl 1457.37094
[18] Chen, Y.; Feng, B.; Ling, L., The robust inverse scattering method for focusing Ablowitz-Ladik equation on the non-vanishing background, Physica D, 424, Article 132954 pp. (2021), 27 pages · Zbl 1486.81160
[19] Ankiewicz, A.; Akhmediev, N.; Soto-Crespo, J. M., Discrete rogue waves of the Ablowitz-Ladik and Hirota equations, Phys. Rev. E, 82, Article 026602 pp. (2010), 7 pages
[20] Ohta, Y.; Yang, J., General rogue waves in the focusing and defocusing Ablowitz-Ladik equations, J. Phys. A, 47, Article 255201 pp. (2014), 23 pages · Zbl 1294.35121
[21] Akhmediev, N.; Ankiewicz, A., Modulation instability, Fermi-Pasta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation, Phys. Rev. E, 83, Article 046603 pp. (2011), 10 pages
[22] Zhao, H. Q.; Yu, G. F., Discrete rational and breather solution in the spatial discrete complex modified Korteweg-de Vries equation and continuous counterparts, Chaos, 27, Article 043113 pp. (2017), 9 pages · Zbl 1387.37068
[23] Agafontsev, D., Extreme waves statistics for Ablowitz-Ladik system, JETP Lett., 98, 731-734 (2013)
[24] Sullivan, J.; Charalampidis, E. G.; Cuevas-Maraver, J.; Kevrekidis, P. G.; Karachalios, N. I., Kuznetsov-Ma breather-like solutions in the Salerno model, Eur. Phys. J. Plus, 135, Article 607 pp. (2020), 12 pages
[25] Chen, J.; Pelinovsky, D. E., Rogue periodic waves in the focusing nonlinear Schrödinger equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 474, Article 20170814 pp. (2018), 18 pages · Zbl 1402.35256
[26] Chen, J.; Pelinovsky, D. E.; White, R. E., Periodic standing waves in the focusing nonlinear Schrödinger equation: Rogue waves and modulation instability, Physica D, 405, Article 132378 pp. (2020), 13 pages · Zbl 1490.35399
[27] Feng, B. F.; Ling, L.; Takahashi, D. A., Multi-breathers and high order rogue waves for the nonlinear Schrödinger equation on the elliptic function background, Stud. Appl. Math., 144, 46-101 (2020) · Zbl 1454.35338
[28] Li, R.; Geng, X., Rogue periodic waves of the sine-Gordon equation, Appl. Math. Lett., 102, Article 106147 pp. (2020), 8 pages · Zbl 1440.35030
[29] Pelinovsky, D. E.; White, R. E., Localized structures on librational and rotational travelling waves in the sine-Gordon equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 476, Article 20200490 pp. (2020), 18 pages · Zbl 1472.35010
[30] Chen, J.; Pelinovsky, D. E., Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation, Phys. Rev. E, 103, Article 062206 pp. (2021), 25 pages
[31] Chen, J.; Pelinovsky, D. E.; Upsal, J., Modulational instability of periodic standing waves in the derivative nonlinear Schrödinger equation, J. Nonlinear Sci., 31, 58 (2021), 32 pages · Zbl 1477.35235
[32] Peng, W. Q.; Pu, J. C.; Chen, Y., PINN deep learning method for the Chen-Lee-Liu equation: Rogue waves on the periodic background, Commun. Nonlinear Sci. Numer. Comput., 105, Article 106067 pp. (2022) · Zbl 1497.35440
[33] Chow, K. W.; Conte, R.; Xu, N., Analytic doubly periodic wave patterns for the integrable discrete nonlinear Schrödinger (Ablowitz-Ladik) model, Phys. Lett. A, 349, 422-429 (2006) · Zbl 1195.81048
[34] Huang, W. H.; Liu, Y. L., Jacobi elliptic function solutions of the Ablowitz-Ladik discrete nonlinear Schrödinger system, Chaos Solitons Fractals, 40, 786-792 (2009) · Zbl 1197.81121
[35] Cao, C. W.; Geng, X. G., Classical integrable systems generated through nonlinearization of eigenvalue problems, (Research Reports in Physics (1990), Springer-Verlag: Springer-Verlag Berlin), 68-78 · Zbl 0728.70012
[36] Geng, X. G.; Dai, H. H.; Zhu, J. Y., Decomposition of the discrete Ablowitz-Ladik hierarchy, Stud. Appl. Math., 118, 281-312 (2007) · Zbl 1533.37153
[37] Liu, X.; Zeng, Y., On the Ablowitz-Ladik equations with self-consistent sources, J. Phys. A, 40, 8765-8790 (2007) · Zbl 1120.37046
[38] Arnold, V. I., Mathematical Methods of Classical Mechanics (1978), Springer-Verlag: Springer-Verlag Berlin · Zbl 0386.70001
[39] Tu, G. Z., The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys., 30, 330-338 (1989) · Zbl 0678.70015
[40] Tu, G. Z., A trace identity and its applications to the theory of discrete integrable systems, J. Phys. A: Math. Gen., 23, 3903-3922 (1990) · Zbl 0717.58027
[41] Khare, A.; Rasmussen, K.Ø.; Samuelsen, M. R.; Saxena, A., Exact solutions of the saturable discrete nonlinear Schrödinger equation, J. Phys. A: Math. Gen., 38, 807-814 (2005) · Zbl 1069.81016
[42] Trefethen, N., Spectral Methods in MatLab (2000), SIAM: SIAM Philadelphia · Zbl 0953.68643
[43] Xu, T.; Pelinovsky, D. E., Darboux transformation and soliton solutions of the semi-discrete massive thirring model, Phys. Lett. A, 383, Article 125948 pp. (2019), 14 pages · Zbl 1477.81062
[44] Deconinck, B.; Segal, B. L., The stability spectrum for elliptic solutions to the focusing NLS equation, Physica D, 346, 1-19 (2017) · Zbl 1415.35251
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.