×

Total variation and high-order total variation adaptive model for restoring blurred images with Cauchy noise. (English) Zbl 1442.94015

Summary: In this paper, we propose a novel model to restore an image corrupted by blur and Cauchy noise. The model is composed of a data fidelity term and two regularization terms including total variation and high-order total variation. Total variation provides well-preserved edge features, but suffers from staircase effects in smooth regions, whereas high-order total variation can alleviate staircase effects. Moreover, we introduce a strategy for adaptively selecting regularization parameters. We develop an efficient alternating minimization algorithm for solving the proposed model. Numerical examples suggest that the proposed method has the advantages of better preserving edges and reducing staircase effects.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65R32 Numerical methods for inverse problems for integral equations

Software:

RecPF
Full Text: DOI

References:

[1] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 1, 259-268 (1992) · Zbl 0780.49028
[2] Aubert, G.; Kornprobst, P., Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (2010), Springer Publishing Company, Incorporated
[3] Bovik; Alan, C., Handbook of Image and Video Processing (2006), Publishing House of Electronics Industry
[4] Deng, L. J.; Huang, T. Z.; Zhao, X. L.; Jiang, T. X., A directional global sparse model for single image rain removal, Appl. Math. Model., 59, 662-679 (2018) · Zbl 1480.94006
[5] Huang, J.; Donatelli, M.; Chan, R. H., nonstationary iterated thresholding algorithms for image deblurring, Inverse Probl. Imag., 7, 3, 717-736 (2013) · Zbl 1318.94015
[6] Zhao, X. L.; Huang, T. Z.; Lv, X. G.; Xu, Z. B.; Huang, J., Kronecker product approximations for image restoration with new mean boundary conditions, Appl. Math. Model., 36, 1, 225-237 (2012) · Zbl 1236.65063
[7] Ma, T. H.; Lou, Y.; Huang, T. Z., Truncated \(\ell_{1 - 2}\) models for sparse recovery and rank minimization, SIAM J. Imag. Sci., 10, 3, 1346-1380 (2017) · Zbl 1397.94021
[8] Krishnan, N.; Muthukumar, S.; Ravi, S.; Shashikala, D.; Pasupathi, P., Image Restoration by Using Evolutionary Technique to Denoise Gaussian and Impulse Noise (2013), Springer International Publishing
[9] Luisier, F.; Blu, T.; Unser, M., Image denoising in mixed Poisson Gaussian noise, IEEE Trans. Image Process., 20, 3, 696-708 (2011) · Zbl 1372.94168
[10] Nguyen, T. A.; Song, W. S.; Hong, M. C., Spatially adaptive denoising algorithm for a single image corrupted by Gaussian noise, IEEE T. Consum. Electr., 56, 3, 1610-1615 (2010)
[11] Dong, Y. Q.; Zeng, T. Y., A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6, 3, 1598-1625 (2013) · Zbl 1283.52012
[12] Zhao, X. L.; Wang, F.; Ng, M. K., A new convex optimization model for multiplicative noise and blur removal, SIAM J. Imaging Sci., 7, 1, 456-475 (2014) · Zbl 1296.65093
[13] Ullah, A.; Chen, W.; Khan, M. A., A new variational approach for restoring images with multiplicative noise, Comput. Math. Appl., 71, 10, 2034-2050 (2016) · Zbl 1443.94032
[14] Chan, R. H.; Dong, Y. Q.; Hintermüller, M., An efficient two-phase L1-TV method for restoring blurred images with impulse noise, IEEE Trans. Image Process., 19, 7, 1731-1739 (2010) · Zbl 1371.94074
[15] Nikolova, M., A variational approach to remove outliers and impulse noise, J. Math. Imaging Vision, 20, 1, 99-120 (2004) · Zbl 1366.94065
[16] John, P. N., Numerical calculation of stable densities and distribution functions, Comm. Statist. Stoch. Models, 13, 4, 759-774 (1997) · Zbl 0899.60012
[17] Nolan, J., Stable Distributions: Models for Heavy-Tailed Data (2003), Birkhauser Boston
[18] Sciacchitano, F.; Dong, Y. Q.; Zeng, T. Y., Variational approach for restoring blurred images with Cauchy noise, SIAM J. Imaging Sci., 8, 3, 1894-1922 (2015) · Zbl 1343.94014
[19] Achim, A.; Kuruoglu, E. E., Image denoising using bivariate \(\alpha \)-stable distributions in the complex wavelet domain, Signal Proc. Let., 12, 1, 17-20 (2005)
[20] Chang, Y. C.; Kadaba, S. R.; Doerschuk, P. C.; Gelfand, S. B., Image restoration using recursive Markov random field models driven by Cauchy distributed noise, IEEE Signal Process. Lett., 8, 3, 65-66 (2001)
[21] Wan, T.; Canagarajah, N.; Achim, A., Segmentation of noisy colour images using Cauchy distribution in the complex wavelet domain, IET Image Process., 5, 2, 159-170 (2011)
[22] Jin, Z. M.; Yang, X. Q., A variational model to remove the multiplicative noise in ultrasound images, J. Math. Imaging Vision, 39, 1, 62-74 (2011) · Zbl 1255.68240
[23] Zhao, X. L.; Wang, W.; Zeng, T. Y.; Huang, T. Z.; Ng, M. K., Total variation structured total least squares method for image restoration, SIAM J. Sci. Comput., 35, 6, 1304-1320 (2013) · Zbl 1287.65014
[24] Bovik, A., Handbook of image and video processing, Acad. Press, 62, 10, 4632-4636 (2000) · Zbl 0967.68155
[25] Mei, J. J.; Dong, Y. Q.; Huang, T. Z.; Yin, W. T., Cauchy noise removal by nonconvex ADMM with convergence guarantees, J. Sci. Comput., 1-24 (2017)
[26] Liu, P. F.; Xiao, L., Efficient multiplicative noise removal method using isotropci second order total variation, Comput. Math. Appl., 70, 8, 2029-2048 (2015) · Zbl 1443.94022
[27] Liu, G.; Huang, T. Z.; Liu, J., High-order TVL1-based images restoration and spatially adapted regularization parameter selection, Comput. Math. Appl., 67, 10, 2015-2026 (2014) · Zbl 1366.94058
[28] Zhang, X.; Ye, W., An adaptive fourth-order partial differential equation for image denoising, Comput. Math. Appl., 74, 10, 2529-2545 (2017) · Zbl 1436.94016
[29] Wang, S.; Huang, T. Z.; Zhao, X. L.; Mei, J. J.; Huang, J., Speckle noise removal in ultrasound images by first- and second-order total variation, Numer. Algorithms, 78, 2, 513-533 (2018) · Zbl 1391.94105
[30] Li, F.; Shen, C.; Fan, J. S.; Shen, C. L., Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image Represent., 18, 4, 322-330 (2007)
[31] Chambolle, A.; Lions, P. L., Image recovery via total variation minimization and related problems, Numer. Math., 76, 2, 167-188 (1997) · Zbl 0874.68299
[32] Lysaker, M.; Lundervold, A.; Tai, X. C., Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12, 12, 1579-1590 (2003) · Zbl 1286.94020
[33] You, Y. L.; Kaveh, M., Fourth-order partial differential equations for noise removal, IEEE Trans. Image Process., 9, 10, 1723-1730 (2000) · Zbl 0962.94011
[34] Setzer, S.; Steidl, G., Variational methods with higher order derivatives in image processing, Approx., 12, 360-386 (2008) · Zbl 1175.68520
[35] Lefkimmiatis, S.; Bourquard, A.; Unser, M., Hessian-based norm regularization for image restoration with biomedical applications, IEEE Trans. Image Process., 21, 3, 983-995 (2012) · Zbl 1372.94145
[36] Bredies, K.; Kunisch, K.; Pock, T., Total generalized variation, SIAM J. Imaging Sci., 3, 3, 492-526 (2010) · Zbl 1195.49025
[37] Mei, J. J.; Huang, T. Z., Primal-dual splitting method for high-order model with application to image restoration, Appl. Math. Model., 40, 3, 2322-2332 (2015) · Zbl 1452.94006
[38] Bertalmio, M.; Caselles, V.; Rougé, B.; Solé, A., TV based image restoration with local constraints, J. Sci. Comput., 19, 1, 95-122 (2003) · Zbl 1034.49036
[39] Almansa, A.; Ballester, C.; Caselles, V.; Haro, G., A TV based restoration model with local constraints, J. Sci. Comput., 34, 3, 209-236 (2008) · Zbl 1218.94007
[40] Ma, T. H.; Huang, T. Z.; Zhao, X. L., New regularization models for image denoising with a spatially dependent regularization parameter, Abstr. Appl. Anal. (2013) · Zbl 1470.94017
[41] Dong, Y. Q.; Hintermüller, M.; Rincon-Camacho, M. M., Automated regularization parameter selection in multi-scale total variation models for image restoration, J. Math. Imaging Vision, 40, 1, 82-104 (2011) · Zbl 1255.68230
[42] Bredies, K.; Dong, Y. Q.; Hintermüller, M., Spatially dependent regularization parameter selection in total generalized variation models for image restoration, Int. J. Comput. Math., 90, 1, 109-123 (2013) · Zbl 1278.68327
[43] Hintermüller, M.; Rincon-Camacho, M. M., Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L1-TV-based image restoration, Inverse Problems, 26, 8, 85005-85034 (2010) · Zbl 1194.94031
[44] Liao, H. Y.; Li, F.; Ng, M. K., Selection of regularization parameter in total variation image restoration, J. Opt. Soc. Amer. A, 26, 11, 2311-2320 (2009)
[45] Wen, Y. W.; Chan, R. H., Parameter selection for total-variation-based image restoration using discrepancy principle, IEEE Trans. Image Process., 21, 4, 1770-1781 (2012) · Zbl 1373.94440
[46] A.Z. Chen, X.M. Huo, Y.W. Wen, Adaptive regularization for color image restoration using discrepancy principle, in: IEEE International Conference on Signal Processing, Communication and Computing, 2013, pp. 1-6.; A.Z. Chen, X.M. Huo, Y.W. Wen, Adaptive regularization for color image restoration using discrepancy principle, in: IEEE International Conference on Signal Processing, Communication and Computing, 2013, pp. 1-6.
[47] Michael, O.; Bouguila, N.; Arnold, D., Optimal selection of regularization parameter in total variation method for reducing noise in magnetic resonance images of the brain, Biomed. Eng. Lett., 4, 1, 80-92 (2014)
[48] Golub, G. H.; Heath, M.; Wahba, G., Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21, 2, 215-223 (1979) · Zbl 0461.62059
[49] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1, 1-122 (2011) · Zbl 1229.90122
[50] Goldstein, T. .; O. B.; Setzer, S., Fast alternating direction optimization methods, SIAM J. Imaging Sci., 7, 3, 1588-1623 (2014) · Zbl 1314.49019
[51] Wang, S.; Huang, T. Z.; Zhao, X. L.; Liu, G.; Cheng, Y. G., Double reweighted sparse regression and graph regularization for hyperspectral unmixing, Remote Sens., 10, 7, 1046 (2018)
[52] Bertsekas, D. P.; Nedic, A.; Ozdaglar, A. E., Convex analysis and optimization, Athena Sci., 129, 2, 420-432 (2012)
[53] Ma, T. H.; Huang, T. Z.; Zhao, X. L., Spatially dependent regularization parameter selection for total generalized variation-based image denoising, J. Comput. Appl. Math., 1-20 (2016)
[54] Donoho, D. L.; Johnstone, I. M.; Kerkyacharian, G.; Picard, D., Wavelet shrinkage: Asymptopia, J. R. Stat. Soc., 57, 2, 301-369 (1995) · Zbl 0827.62035
[55] Zuo, W.; Lin, Z., A generalized accelerated proximal gradient approach for total variation based image restoration, IEEE Trans. Image Process., 20, 10, 2748-2759 (2011) · Zbl 1372.94320
[56] Wang, Y. L.; Yang, J. F.; Yin, W. T.; Zhang, Y., A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1, 3, 248-272 (2008) · Zbl 1187.68665
[57] Liu, R. W.; Shi, L.; Huang, W.; Xu, J.; Yu, S. C.; Wang, D., Generalized total variation-based MRI rician denoising model with spatially adaptive regularization parameters, Magn. Reson. Imaging, 32, 6, 702-720 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.