×

Mapping the genetic-imaging-clinical pathway with applications to Alzheimer’s disease. (English) Zbl 1515.62123

Summary: Alzheimer’s disease is a progressive form of dementia that results in problems with memory, thinking, and behavior. It often starts with abnormal aggregation and deposition of \(\beta\) amyloid and tau, followed by neuronal damage such as atrophy of the hippocampi, leading to Alzheimer’s disease (AD). The aim of this article is to map the genetic-imaging-clinical pathway for AD in order to delineate the genetically-regulated brain changes that drive disease progression based on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. We develop a novel two-step approach to delineate the association between high-dimensional 2D hippocampal surface exposures and the Alzheimer’s Disease Assessment Scale (ADAS) cognitive score, while taking into account the ultra-high dimensional clinical and genetic covariates at baseline. Analysis results suggest that the radial distance of each pixel of both hippocampi is negatively associated with the severity of behavioral deficits conditional on observed clinical and genetic covariates. These associations are stronger in Cornu Ammonis region 1 (CA1) and subiculum subregions compared to Cornu Ammonis region 2 (CA2) and Cornu Ammonis region 3 (CA3) subregions. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
92C55 Biomedical imaging and signal processing
62H35 Image analysis in multivariate analysis

References:

[1] Aizenstein, H. J.; Nebes, R. D.; Saxton, J. A.; Price, J. C.; Mathis, C. A.; Tsopelas, N. D.; Ziolko, S. K.; James, J. A.; Snitz, B. E.; Houck, P. R.; Bi, W.; Cohen, A. D.; Lopresti, B. J.; DeKosky, S. T.; Halligan, E. M.; Klunk, W. E., “Frequent Amyloid Deposition Without Significant Cognitive Impairment Among the Elderly, Archives of Neurology, 65, 1509-1517 (2008) · doi:10.1001/archneur.65.11.1509
[2] Apostolova, L. G.; Dinov, I. D.; Dutton, R. A.; Hayashi, K. M.; Toga, A. W.; Cummings, J. L.; Thompson, P. M., “3D Comparison of Hippocampal Atrophy in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease, Brain, 129, 2867-2873 (2006) · doi:10.1093/brain/awl274
[3] Apostolova, L. G.; Mosconi, L.; Thompson, P. M.; Green, A. E.; Hwang, K. S.; Ramirez, A.; Mistur, R.; Tsui, W. H.; de Leon, M. J., “Subregional Hippocampal Atrophy Predicts Alzheimer’s Dementia in the Cognitively Normal, Neurobiology of Aging, 31, 1077-1088 (2010) · doi:10.1016/j.neurobiolaging.2008.08.008
[4] Barrett, J. C.; Fry, B.; Maller, J.; Daly, M. J., “Haploview: Analysis and Visualization of LD and Haplotype Maps, Bioinformatics, 21, 263-265 (2005) · doi:10.1093/bioinformatics/bth457
[5] Barut, E.; Fan, J.; Verhasselt, A., “Conditional Sure Independence Screening, Journal of the American Statistical Association, 111, 1266-1277 (2016) · doi:10.1080/01621459.2015.1092974
[6] Bertram, L.; Tanzi, R. E., “Genomic Mechanisms in Alzheimer’s Disease, Brain Pathology, 30, 966-977 (2020) · doi:10.1111/bpa.12882
[7] Bi, X.; Yang, L.; Li, T.; Wang, B.; Zhu, H.; Zhang, H., “Genome-Wide Mediation Analysis of Psychiatric and Cognitive Traits Through Imaging Phenotypes, Human Brain Mapping, 38, 4088-4097 (2017) · doi:10.1002/hbm.23650
[8] Blackstad, T.; Brink, K.; Hem, J.; June, B., “Distribution of Hippocampal Mossy Fibers in the Rat. An Experimental Study with Silver Impregnation Methods, Journal of Comparative Neurology, 138, 433-449 (1970) · doi:10.1002/cne.901380404
[9] Braak, H.; Braak, E.; Jellinger, K.; Fazekas, F.; Windisch, M., Ageing and Dementia, “Evolution of Neuronal Changes in the Course of Alzheimer’s Disease,”, 127-140 (1998), Vienna: Springer, Vienna
[10] Brookhart, M. A.; Schneeweiss, S.; Rothman, K. J.; Glynn, R. J.; Avorn, J.; Stürmer, T., “Variable Selection for Propensity Score Models, American Journal of Epidemiology, 163, 1149-1156 (2006) · doi:10.1093/aje/kwj149
[11] Chung, S. J.; Kim, M.-J.; Kim, J.; Kim, Y. J.; You, S.; Koh, J.; Kim, S. Y.; Lee, J.-H., “Exome Array Study did not Identify Novel Variants in Alzheimer’s Disease, Neurobiology of Aging, 35, 1958-e13 (2014) · doi:10.1016/j.neurobiolaging.2014.03.007
[12] Coon, K. D.; Myers, A. J.; Craig, D. W.; Webster, J. A.; Pearson, J. V.; Lince, D. H.; Zismann, V. L.; Beach, T. G.; Leung, D.; Bryden, L.; Halperin, R. F.; Marlowe, L.; Kaleem, M.; Walker, D. G.; Ravid, R.; Heward, C. B.; Rogers, J.; Papassotiropoulos, A.; Reiman, E. M.; Hardy, J.; Stephan, D. A., “A High-Density Whole-Genome Association Study Reveals that APOE is the Major Susceptibility Ggene for Sporadic Late-Onset Alzheimer’s Disease, The Journal of Clinical Psychiatry, 68, 613-618 (2007) · doi:10.4088/jcp.v68n0419
[13] De Leon, M.; George, A.; Stylopoulos, L.; Smith, G.; Miller, D., “Early Marker for Alzheimer’s Disease: The Atrophic Hippocampus, The Lancet, 334, 672-673 (1989) · doi:10.1016/S0140-6736(89)90911-2
[14] Dehman, A.; Ambroise, C.; Neuvial, P., “Performance of a Blockwise Approach in Variable Selection Using Linkage Disequilibrium Information, BMC Bioinformatics, 16, 1-14 (2015) · doi:10.1186/s12859-015-0556-6
[15] Du, L.; Liu, K.; Yao, X.; Risacher, S. L.; Han, J.; Guo, L.; Saykin, A. J.; Shen, L., Fast Multi-Task SCCA Learning with Feature Selection for Multi-Modal Brain Imaging Genetics, 356-361 (2018)
[16] Dudek, S. M.; Alexander, G. M.; Farris, S., “Rediscovering Area CA2: Unique Properties and Functions, Nature Reviews Neuroscience, 17, 89-102 (2016) · doi:10.1038/nrn.2015.22
[17] Fan, J.; Lv, J., “Sure Independence Screening for Ultrahigh Dimensional Feature Space, Journal of the Royal Statistical Society, Series B, 70, 849-911 (2008) · Zbl 1411.62187 · doi:10.1111/j.1467-9868.2008.00674.x
[18] Ferrari, D. V.; Avila, M. E.; Medina, M. A.; Pérez-Palma, E.; Bustos, B. I.; Alarcon, M. A., Wnt/\(####\)-catenin Signaling in Alzheimer’s Disease, CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 13, 745-754 (2014)
[19] Ferreira, S. T.; Klein, W. L., The A \(####\) Oligomer Hypothesis for Synapse Failure and Memory Loss in Alzheimer’s Disease, Neurobiology of Learning and Memory, 96, 529-543 (2011)
[20] Fox, N.; Warrington, E.; Freeborough, P.; Hartikainen, P.; Kennedy, A.; Stevens, J.; Rossor, M. N., “Presymptomatic Hippocampal Atrophy in Alzheimer’s Disease: A Longitudinal MRI Study, Brain, 119, 2001-2007 (1996) · doi:10.1093/brain/119.6.2001
[21] Frozza, R. L.; Lourenco, M. V.; De Felice, F. G., “Challenges for Alzheimer’s Disease Therapy: Insights from Novel Mechanisms Beyond Memory Defects, Frontiers in Neuroscience, 12, 37 (2018) · doi:10.3389/fnins.2018.00037
[22] Gabriel, S. B.; Schaffner, S. F.; Nguyen, H.; Moore, J. M.; Roy, J.; Blumenstiel, B.; Higgins, J.; DeFelice, M.; Lochner, A.; Faggart, M.; Liu-Cordero, S. N.; Rotimi, C.; Adeyemo, A.; Cooper, R.; Ward, R.; Lander, E. S.; Daly, M. J.; Altshuler, D., “The Structure of Haplotype Blocks in the Human Genome, Science, 296, 2225-2229 (2002) · doi:10.1126/science.1069424
[23] Gao, L.; Cui, Z.; Shen, L.; Ji, H.-F., “Shared Genetic Etiology between Type 2 Diabetes and Alzheimer’s Disease Identified by Bioinformatics Analysis, Journal of Alzheimer’s Disease, 50, 13-17 (2016) · doi:10.3233/JAD-150580
[24] Gaugler, J.; James, B.; Johnson, T.; Marin, A.; Weuve, J., “2019 Alzheimer’s Disease Facts and Figures,”, Alzheimer’s & Dementia, 15, 321-387 (2019)
[25] Guerreiro, R.; Bras, J., “The Age Factor in Alzheimer’s Disease, Genome Medicine, 7, 106 (2015) · doi:10.1186/s13073-015-0232-5
[26] Guo, Y.; Xu, W.; Li, J.-Q.; Ou, Y.-N.; Shen, X.-N.; Huang, Y.-Y.; Dong, Q.; Tan, L.; Yu, J.-T., “Genome-Wide Association Study of Hippocampal Atrophy Rate in Non-demented Elders, Aging (Albany NY), 11, 10468-10484 (2019) · doi:10.18632/aging.102470
[27] Hampel, H.; Mesulam, M.-M.; Cuello, A. C.; Farlow, M. R.; Giacobini, E.; Grossberg, G. T.; Khachaturian, A. S.; Vergallo, A.; Cavedo, E.; Snyder, P. J.; Khachaturian, Z. S., “The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease, Brain, 141, 1917-1933 (2018) · doi:10.1093/brain/awy132
[28] Hao, N.; Zhang, H. H., “Interaction Screening for Ultrahigh-Dimensional Data, Journal of the American Statistical Association, 109, 1285-1301 (2014) · Zbl 1368.62193 · doi:10.1080/01621459.2014.881741
[29] Hao, X.; Li, C.; Du, L.; Yao, X.; Yan, J.; Risacher, S. L.; Saykin, A. J.; Shen, L.; Zhang, D., “Mining Outcome-Relevant Brain Imaging Genetic Associations via Three-Way Sparse Canonical Correlation Analysis in Alzheimer’s Disease, Scientific Reports, 7, 1-12 (2017) · doi:10.1038/srep44272
[30] Hastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning: Data mining, Inference, and Prediction (2009), New York: Springer, New York · Zbl 1273.62005
[31] Hesse, C.; Rosengren, L.; Andreasen, N.; Davidsson, P.; Vanderstichele, H.; Vanmechelen, E.; Blennow, K., “Transient Increase in Total Tau but not Phospho-Tau in Human Cerebrospinal Fluid After Acute Stroke, Neuroscience Letters, 297, 187-190 (2001) · doi:10.1016/S0304-3940(00)01697-9
[32] Jack, C.; Petersen, R. C.; Xu, Y.; O’Brien, P.; Smith, G.; Ivnik, R.; Boeve, B. F.; Tangalos, E. G.; Kokmen, E., “Rates of Hippocampal Atrophy Correlate with Change in Clinical Status in Aging and AD, Neurology, 55, 484-490 (2000) · doi:10.1212/wnl.55.4.484
[33] Jack, C.; Slomkowski, M.; Gracon, S.; Hoover, T.; Felmlee, J.; Stewart, K.; Xu, Y.; Shiung, M.; O’Brien, P.; Cha, R.; Knopman, D.; Petersen, R. C., “MRI as a Biomarker of Disease Progression in a Therapeutic Trial of Milameline for AD, Neurology, 60, 253-260 (2003) · doi:10.1212/01.WNL.0000042480.86872.03
[34] Jack, C. R. Jr.; Knopman, D. S.; Jagust, W. J.; Petersen, R. C.; Weiner, M. W.; Aisen, P. S.; Shaw, L. M.; Vemuri, P.; Wiste, H. J.; Weigand, S. D.; Lesnick, T. G.; Pankratz, V. S.; Donohue, M. C.; Trojanowski, J. Q., “Tracking Pathophysiological Processes in Alzheimer’s Disease: An Updated Hypothetical Model of Dynamic Biomarkers, The Lancet Neurology, 12, 207-216 (2013) · doi:10.1016/S1474-4422(12)70291-0
[35] Jack, C. R. Jr.; Knopman, D. S.; Jagust, W. J.; Shaw, L. M.; Aisen, P. S.; Weiner, M. W.; Petersen, R. C.; Trojanowski, J. Q., “Hypothetical Model of Dynamic Biomarkers of the Alzheimer’s Pathological Cascade, The Lancet Neurology, 9, 119-128 (2010) · doi:10.1016/S1474-4422(09)70299-6
[36] Khan, W.; Aguilar, C.; Kiddle, S. J.; Doyle, O.; Thambisetty, M.; Muehlboeck, S.; Sattlecker, M.; Newhouse, S.; Lovestone, S.; Dobson, R.; Giampietro, V., “A Subset of Cerebrospinal Fluid Proteins from a Multi-Analyte Panel Associated with Brain Atrophy, Disease Classification and Prediction in Alzheimer’s Disease, PloS One, 10, e0134368 (2015) · doi:10.1371/journal.pone.0134368
[37] Kim, J.; Basak, J. M.; Holtzman, D. M., “The Role of Apolipoprotein E in Alzheimer’s Disease, Neuron, 63, 287-303 (2009) · doi:10.1016/j.neuron.2009.06.026
[38] Kong, D.; An, B.; Zhang, J.; Zhu, H., “L2RM: Low-rank Linear Regression Models for High-Dimensional Matrix Responses, Journal of the American Statistical Association, 115, 403-424 (2020) · Zbl 1437.62357 · doi:10.1080/01621459.2018.1555092
[39] Li, S.; Shi, F.; Pu, F.; Li, X.; Jiang, T.; Xie, S.; Wang, Y., “Hippocampal Shape Analysis of Alzheimer Disease Based on Machine Learning Methods, American Journal of Neuroradiology, 28, 1339-1345 (2007) · doi:10.3174/ajnr.A0620
[40] Lin, W.; Feng, R.; Li, H., “Regularization Methods for High-Dimensional Instrumental Variables Regression with an Application to Genetical Genomics, Journal of the American Statistical Association, 110, 270-288 (2015) · Zbl 1373.62371 · doi:10.1080/01621459.2014.908125
[41] Maass, A.; Lockhart, S. N.; Harrison, T. M.; Bell, R. K.; Mellinger, T.; Swinnerton, K.; Baker, S. L.; Rabinovici, G. D.; Jagust, W. J., “Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging, Journal of Neuroscience, 38, 530-543 (2018) · doi:10.1523/JNEUROSCI.2028-17.2017
[42] Majdi, A.; Sadigh-Eteghad, S.; Aghsan, S. R.; Farajdokht, F.; Vatandoust, S. M.; Namvaran, A.; Mahmoudi, J., Amyloid-\(####\), Tau, and the Cholinergic System in Alzheimer’s Disease: Seeking Direction in a Tangle of Clues, Reviews in the Neurosciences, 31, 391-413 (2020)
[43] Mohs, R. C.; Knopman, D.; Petersen, R. C.; Ferris, S. H.; Ernesto, C.; Grundman, M.; Sano, M.; Bieliauskas, L.; Geldmacher, D.; Clark, C.; Thal, L. J., “Development of Cognitive Instruments for Use in Clinical Trials of Antidementia Drugs: Additions to the Alzheimer’s Disease Assessment Scale that Broaden its Scope, Alzheimer Disease and Associated Disorders, 11, 13-21 (1997) · doi:10.1097/00002093-199700112-00003
[44] Morishima-Kawashima, M.; Ihara, Y., Alzheimer’s Disease: \(####\)-Amyloid Protein and Tau, Journal of Neuroscience Research, 70, 392-401 (2002)
[45] Nitsch, R. M.; Slack, B. E.; Wurtman, R. J.; Growdon, J. H., “Release of Alzheimer Amyloid Precursor Derivatives Stimulated by Activation of Muscarinic Acetylcholine Receptors, Science, 258, 304-307 (1992) · doi:10.1126/science.1411529
[46] Noble, K. G.; Grieve, S. M.; Korgaonkar, M. S.; Engelhardt, L. E.; Griffith, E. Y.; Williams, L. M.; Brickman, A. M., “Hippocampal Volume Varies with Educational Attainment Across the Life-Span, Frontiers in Human Neuroscience, 6, 307 (2012) · doi:10.3389/fnhum.2012.00307
[47] Paterson, R.; Bartlett, J.; Blennow, K.; Fox, N.; Shaw, L.; Trojanowski, J.; Zetterberg, H.; Schott, J., “Cerebrospinal Fluid Markers Including Trefoil Factor 3 are Associated with Neurodegeneration in Amyloid-Positive Individuals, Translational Psychiatry, 4, e419 (2014) · doi:10.1038/tp.2014.58
[48] Pedraza, O.; Bowers, D.; Gilmore, R., “Asymmetry of the Hippocampus and Amygdala in MRI Volumetric Measurements of Normal Adults, Journal of the International Neuropsychological Society, 10, 664-678 (2004) · doi:10.1017/S1355617704105080
[49] Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M. A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P. I.; Daly, M. J.; Sham, P. C., “PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses, The American Journal of Human Genetics, 81, 559-575 (2007) · doi:10.1086/519795
[50] Remnestål, J.; Bergström, S.; Olofsson, J.; Sjöstedt, E.; Uhlén, M.; Blennow, K.; Zetterberg, H.; Zettergren, A.; Kern, S.; Skoog, I.; Nilsson, P.; Månberg, A., Association of CSF Proteins with Tau and Amyloid \(####\) Levels in Asymptomatic 70-year-Olds, Alzheimer’s Research & Therapy, 13, 1-19 (2021)
[51] Richardson, T. S.; Robins, J. M.; Wang, L., “Discussion of “Data-Driven Confounder Selection via Markov and Bayesian Networks” by Häggström, Biometrics, 74, 403-406 (2018) · Zbl 1415.62129
[52] Sargolzaei, S.; Sargolzaei, A.; Cabrerizo, M.; Chen, G.; Goryawala, M.; Noei, S.; Zhou, Q.; Duara, R.; Barker, W.; Adjouadi, M., “A Practical Guideline for Intracranial Volume Estimation in Patients with Alzheimer’s Disease, BMC Bioinformatics, 16, 1-10 (2015) · doi:10.1186/1471-2105-16-S7-S8
[53] Schisterman, E. F.; Cole, S. R.; Platt, R. W., “Overadjustment Bias and Unnecessary Adjustment in Epidemiologic Studies, Epidemiology (Cambridge, Mass.), 20, 488-495 (2009) · doi:10.1097/EDE.0b013e3181a819a1
[54] Selkoe, D. J.; Hardy, J., “The Amyloid Hypothesis of Alzheimer’s Disease at 25 Years, EMBO Molecular Medicine, 8, 595-608 (2016) · doi:10.15252/emmm.201606210
[55] Shortreed, S. M.; Ertefaie, A., “Outcome-Adaptive Lasso: Variable Selection for Causal Inference, Biometrics, 73, 1111-1122 (2017) · Zbl 1405.62203 · doi:10.1111/biom.12679
[56] Sims, R.; Hill, M.; Williams, J., “The Multiplex Model of the Genetics of Alzheimer’s Disease, Nature Neuroscience, 23, 311-322 (2020) · doi:10.1038/s41593-020-0599-5
[57] Takei, N.; Miyashita, A.; Tsukie, T.; Arai, H.; Asada, T.; Imagawa, M.; Shoji, M.; Higuchi, S.; Urakami, K.; Kimura, H.; Kakita, A., “Genetic Association Study on in and around the APOE in Late-Onset Alzheimer’s Disease in Japanese, Genomics, 93, 441-448 (2009) · doi:10.1016/j.ygeno.2009.01.003
[58] Tang, D.; Kong, D.; Pan, W.; Wang, L., “Ultra-High Dimensional Variable Selection for Doubly Robust Causal Inference, Biometrics (2021) · Zbl 1522.62235 · doi:10.1111/biom.13625
[59] Thompson, P. M.; Hayashi, K. M.; de Zubicaray, G. I.; Janke, A. L.; Rose, S. E.; Semple, J.; Hong, M. S.; Herman, D. H.; Gravano, D.; Doddrell, D. M.; Toga, T. W., “Mapping Hippocampal and Ventricular Change in Alzheimer’s Disease, NeuroImage, 22, 1754-1766 (2004) · doi:10.1016/j.neuroimage.2004.03.040
[60] Van de Pol, L.; Hensel, A.; Barkhof, F.; Gertz, H.; Scheltens, P.; Van Der Flier, W., “Hippocampal Atrophy in Alzheimer’s Disease: Age Matters, Neurology, 66, 236-238 (2006) · doi:10.1212/01.wnl.0000194240.47892.4d
[61] Vina, J.; Lloret, A., Why Women have More Alzheimer’s Disease than Men: Gender and Mitochondrial Toxicity of Amyloid-\(####\) Peptide, Journal of Alzheimer’s Disease, 20, S527-S533 (2010)
[62] Wall, J. D.; Pritchard, J. K., “Haplotype Blocks and Linkage Disequilibrium in the Human Genome, Nature Reviews Genetics, 4, 587-597 (2003) · doi:10.1038/nrg1123
[63] Watson, S., “Brain Atrophy (Cerebral Atrophy),” (2019)
[64] Weiner, M. W.; Veitch, D. P.; Aisen, P. S.; Beckett, L. A.; Cairns, N. J.; Green, R. C.; Harvey, D.; Jack, C. R.; Jagust, W.; Liu, E.; Morris, J. C., “The Alzheimer’s Disease Neuroimaging Initiative: A Review of Papers Published Since its Inception,”, Alzheimer’s & Dementia, 9, e111-e194 (2013)
[65] Zhang, M.; Katzman, R.; Salmon, D.; Jin, H.; Cai, G.; Wang, Z.; Qu, G.; Grant, I.; Yu, E.; Levy, P.; Klauber, M. R., “The Prevalence of Dementia and Alzheimer’s Disease in Shanghai, China: Impact of Age, Gender, and Education, Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 27, 428-437 (1990) · doi:10.1002/ana.410270412
[66] Zhao, B.; Luo, T.; Li, T.; Li, Y.; Zhang, J.; Shan, Y.; Wang, X.; Yang, L.; Zhou, F.; Zhu, Z.; Zhu, H., “Genome-Wide Association Analysis of 19,629 Individuals Identifies Variants Influencing Regional Brain Volumes and Refines their Genetic Co-architecture with Cognitive and Mental Health Traits, Nature Genetics, 51, 1637-1644 (2019) · doi:10.1038/s41588-019-0516-6
[67] Zhou, F.; Zhou, H.; Li, T.; Zhu, H., “Analysis of Secondary Phenotypes in Multi-Group Association Studies, Biometrics, 76, 606-618 (2020) · Zbl 1451.62156 · doi:10.1111/biom.13157
[68] Zhou, H.; Li, L., “Regularized Matrix Regression, Journal of the Royal Statistical Society, Series B, 76, 463-483 (2014) · Zbl 07555458 · doi:10.1111/rssb.12031
[69] Zhou, X.; Chen, Y.; Mok, K. Y.; Zhao, Q.; Chen, K.; Chen, Y.; Hardy, J.; Li, Y.; Fu, A. K. Y.; Guo, Q.-H.; Ip, N. Y., “Identification of Genetic Risk Factors in the Chinese Population Implicates a Role of Immune System in Alzheimer’s Disease Pathogenesis, Proceedings of the National Academy of Sciences, 115, 1697-1706 (2018) · doi:10.1073/pnas.1715554115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.