×

\(C_0\)-semigroups of holomorphic Carathéodory isometries in reflexive TRO. (English) Zbl 1424.47103

Let \(\mathbb{H}_1,\mathbb{H}_2\) denote complex Hilbert spaces, \(\dim(\mathbb{H}_2) < \infty\), and \(\mathbb{E}\) the space of bounded linear operators from \(\mathbb{H}_1\) to \(\mathbb{H}_2\). The author considers the open unit ball \(\mathbb{B}\) of \(\mathbb{E}\) with its holomorphic invariant metric \(d_{\mathbb{B}}\) such that \(d_{\mathbb{B}}(0, x) = \mathrm{artanh}\Vert x\Vert \) (Carathéodory distance of \(\mathbb{B}\)) along with a \(C_0\)-semigroup \(\{\Phi^t:t\in{\mathbb{R}}_+\}\subset \text{Iso}(d_{\mathbb{B})} := \{\text{holomorphic } d_{\mathbb{B}} \text{-isometries}\}\). with (non-linear) infinitesimal generator \(\Phi'\).
The Möbius transformation is a surjective biholomorphic Carathéodory isometry of the unit ball. Two \(C_0\)-semigroups \(\Phi^t\) and \(\Phi^t\) are Möbius equivalent if \(\Psi^t=\Theta \Phi^t \Theta^{-1}\).
The main result of the paper under review is the following.
Let \(\Psi^t\) be a \(C_0\)-semigroup not Möbius equivalent to a \(C_0\)-semigroup of linear isometries. Then there is a Möbius equivalent \(C_0\)-semigroup \(\Phi^t\) to \(\Psi^t\) of the form \[ \Phi^t(X)=E+W^t(X-E)\left[\int\limits_0^t S^{t-h}b\ast W^h(X-E)\, dh+S^t\right]^{-1} \text{ for all }X\in \mathbb{B} \] for some \(b\in \mathbb{E}\), where \(E\in\partial \mathbb{B}\) is a common fixed point of \(\Phi^t\), \(E\) is a partial isometry, and \(W^t\), \(S^t\) are suitable \(C_0\)-semigroups.
The structure of the semigroups \(W^t\), \(S^t\) is also examined.

MSC:

47D03 Groups and semigroups of linear operators
32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables
46G20 Infinite-dimensional holomorphy
32M05 Complex Lie groups, group actions on complex spaces
Full Text: DOI

References:

[1] Apazoglou, M., Facial and ideal structure on real C*-algebras, Math. Proc. R. Ir. Acad., 112, 1-7 (2012) · Zbl 1280.46035 · doi:10.3318/PRIA.2012.112.1
[2] Apazoglou, M.; Peralta, A., Linear isometries between real JB*-triples and C*-algebras, Q. J. Math., 2, 485-503 (2014) · Zbl 1320.46010 · doi:10.1093/qmath/hat033
[3] Engel, K-J; Nagel, R., One-Parameter Semigroups for Linear Evolution Equations (2000), New York: Springer-Verlag, New York · Zbl 0952.47036
[4] Franzoni, T.; Vesentini, E., Holomorphic Maps and Invariant Distances (1980), Amsterdam-New York-Oxford: North Holland Math. Studies 40, North Holland Publ. Co., Amsterdam-New York-Oxford · Zbl 0447.46040
[5] Hirzebruch, U., Halbräume und ihre holomorphen Automorphismen, Math. Annalen, 5, 395-417 (1964) · Zbl 0124.29303 · doi:10.1007/BF01360675
[6] Isidro, J-M; Stachó, L. L., Holomorphic Automorphism Groups in Banach Spaces (1985), Oxford-New York-Amsterdam: North Holland Publ. Co., Oxford-New York-Amsterdam · Zbl 0561.46022
[7] Isidro, J-M; Stachó, L. L., On the structure of ternary rings of operators, Ann. Univ. Sci. Bcudapest, 46, 149-156 (2003) · Zbl 1092.46041
[8] Kaup, W., Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension I, Math. Ann., 357, 463-481 (1981) · Zbl 0482.32010 · doi:10.1007/BF01465868
[9] Kaup, W., A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z., 83, 503-529 (1983) · Zbl 0519.32024 · doi:10.1007/BF01173928
[10] Khatskevich, V.; Reich, S.; Shoikhet, D., One-parameter semigroups of fractional-linear transformations, Operator Theory Advances and Applications, 123, 401-411 (2001) · Zbl 0991.47025
[11] Nachbin, L., Holomorphic functions, domains of holomorphy and local properties (1970), Oxford-New York-Amsterdam: North-Holland Pub. Co., Oxford-New York-Amsterdam · Zbl 0208.10301
[12] Peralta, A.; Stachó, L. L., Atomic decomposition of real JBW*-triples, Q. J. Math., 52/, 79-87 (2001) · Zbl 0982.46058 · doi:10.1093/qjmath/52.1.79
[13] Stachó, L. L., On strongly continuous one-parameter groups of automorphisms of multilinear functionals, J. Math. Anal. Appl., 363, 419-430 (2010) · Zbl 1200.46036 · doi:10.1016/j.jmaa.2009.08.053
[14] Stachó, L. L., A fixed point approach to C_0-groups of ball automorphisms in Hilbert space, Rev. Roum., 61, 241-159 (2016) · Zbl 1389.47113
[15] Stachó, L. L., On the structure of C_0-semigroups of holomorphic Carathéodory isometries in Hilbert space, J. Math. Anal. Appl., 445, 139-150 (2017) · Zbl 1358.47027 · doi:10.1016/j.jmaa.2016.07.038
[16] Stachó, L. L., On C_0-semigroups of holomorphic isometries with fixed point in JB*-triples, Rev. Roum., 63, 211-235 (2018) · Zbl 1424.47104
[17] Vesentini, E., Semigroups of holomorphic isometries, Advances in Math., 65, 272-306 (1987) · Zbl 0642.47035 · doi:10.1016/0001-8708(87)90025-9
[18] E. Vesentini, Semigroups of holomorphic isometries, Complex Potential Theory (ed.: P. M. Gauthier), Kluwer Academic Pulbl., Netherlands, 1994, 475-548. · Zbl 0802.46058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.