×

Pfister’s local-global principle and systems of quadratic forms. (English) Zbl 1464.11039

Given a system of regular quadratic forms \(\{q_i : i\in I\}\) with the same underlying vector space \(V\) over \(K\), we say that the system is hyperbolic if \(V\) decomposes as \(W\oplus W\) where each of the quadratic forms vanishes over each copy of \(W\). This of course generalizes the standard notion of a hyperbolic quadratic form, which for a single form means that \(q \simeq x_1y_1+\dots+x_n y_n\).
Suppose \(\operatorname{char}(K)\neq 2\). Then every quadratic form is diagonalizable. For any ordering \(P\) of \(K\) and \(\alpha\in K\), \(\operatorname{sgn}_P(\alpha)\) is 1 when \(\alpha \in P\), \(-1\) when \(\alpha \in -P\) and \(0\) when \(\alpha=0\). Then for \(q=\langle \alpha_1,\dots,\alpha_n \rangle\), \(\operatorname{sgn}_P(q)=\sum_{i=1}^n \operatorname{sgn}_P(\alpha_i)\). The total signature of \(q\), denoted \(\operatorname{sgn}(q)\), is the function mapping each ordering \(P\) of \(K\) to \(\operatorname{sgn}_P(q)\). Pfister proved that there exists a natural number \(m\) for which \(m\times q\) is hyperbolic if and only if \(\operatorname{sgn}(q)=0\).
The goal of the paper under discussion is to extend Pfister’s condition to systems of quadratic forms. The author associates a single quadratic form \(q_{A,\sigma}\) to the system \(\{q_i : i\in I\}\) (\(A\) is the \(K\)-algebra of adjoints of \(\{q_i : i\in I\}\), \(\sigma\) its canonical involution, and \(q_{A,\sigma}\) is the involution-trace quadratic form on \(A\)). The main result (Theorem A) is that there exists a natural number \(m\) for which \(m \times \{q_i : i\in I\}\) if and only if \(\operatorname{sgn}(q_{A,\sigma})=0\). The author presents other interesting results too, some of which require additional assumptions on the base-field or the size of the system.

MSC:

11E04 Quadratic forms over general fields
11E81 Algebraic theory of quadratic forms; Witt groups and rings

References:

[1] J. F.Adams, ‘Vector fields on spheres’, Ann. of Math. (2)75 (1962) 603-632. · Zbl 0112.38102
[2] E.Bayer‐Fluckiger, ‘Principe de Hasse faible pour les systèmes de formes quadratiques’, J. reine angew. Math.378 (1987) 53-59. · Zbl 0625.10014
[3] E.Bayer‐Fluckiger, U. A.First and D. A.Moldovan, ‘Hermitian categories, extension of scalars and systems of sesquilinear forms’, Pacific J. Math.270 (2014) 1-26. · Zbl 1317.11036
[4] E.Bayer‐Fluckiger and H. W.Lenstra, Jr,‘Forms in odd degree extensions and self‐dual normal bases’, Amer. J. Math.112 (1990) 359-373. · Zbl 0729.12006
[5] E.Bayer‐Fluckiger, R.Parimala and J.‐P.Serre, ‘Hasse principle for G‐trace forms’, Izv. Ross. Akad. Nauk Ser. Mat.77 (2013) 5-28. · Zbl 1368.11030
[6] K. J.Becher and T.Unger, ‘Weakly hyperbolic involutions’, Expo. Math.36 (2018) 78-97. · Zbl 1441.11073
[7] U. A.First, ‘Bilinear forms and rings with involution’, PhD Thesis, Bar-Ilan University, 2012. (Available on the author’s webpage.)
[8] P.Gabriel, ‘Appendix: degenerate bilinear forms’, J. Algebra31 (1974) 67-72. · Zbl 0282.15014
[9] I.Kaplansky, Linear algebra and geometry: a second course, revised edn (Dover Publications, Mineola, NY, 2003). · Zbl 1040.15001
[10] M.‐A.Knus, Quadratic and Hermitian forms over rings, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 294 (Springer, Berlin, 1991). (With a foreword by I. Bertuccioni.) · Zbl 0756.11008
[11] M.‐A.Knus, A.Merkurjev, M.Rost and J.‐P.Tignol, The book of involutions, American Mathematical Society Colloquium Publications 44 (American Mathematical Society, Providence, RI, 1998). (With a preface in French by J. Tits.) · Zbl 0955.16001
[12] D. W.Lewis and J.‐P.Tignol, ‘On the signature of an involution’, Arch. Math. (Basel)60 (1993) 128-135. · Zbl 0739.11015
[13] D. W.Lewis and T.Unger, ‘A local-global principle for algebras with involution and Hermitian forms’, Math. Z.244 (2003) 469-477. · Zbl 1092.16011
[14] A.Pfister, Quadratic forms with applications to algebraic geometry and topology, London Mathematical Society Lecture Note Series 217 (Cambridge University Press, Cambridge, 1995). · Zbl 0847.11014
[15] H.‐G.Quebbemann, W.Scharlau and M.Schulte, ‘Quadratic and Hermitian forms in additive and abelian categories’, J. Algebra59 (1979) 264-289. · Zbl 0412.18016
[16] A.Quéguiner, ‘Signature des involutions de deuxième espèce’, Arch. Math. (Basel)65 (1995) 408-412. · Zbl 0854.11024
[17] W.Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 270 (Springer, Berlin, 1985). · Zbl 0584.10010
[18] J. B.Wilson, ‘Decomposing \(p\)‐groups via Jordan algebras’, J. Algebra322 (2009) 2642-2679. · Zbl 1205.20019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.