×

A note on adiabatic time evolution and quasi-static processes in translation-invariant quantum systems. (English) Zbl 1540.81073

Summary: We study the slowly varying, non-autonomous quantum dynamics of a translation-invariant spin or fermion system on the lattice \(\mathbb{Z}^d\). This system is assumed to be initially in thermal equilibrium, and we consider realizations of quasi-static processes in the adiabatic limit. By combining the Gibbs variational principle with the notion of quantum weak Gibbs states introduced in [V. Jakšić et al., Ann. Henri Poincaré 25, No. 1, 715–749 (2024; Zbl 07802657)], we establish a number of general structural results regarding such realizations. In particular, we show that such a quasi-static process is incompatible with the property of approach to equilibrium studied in this previous work.

MSC:

81R25 Spinor and twistor methods applied to problems in quantum theory
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
81V74 Fermionic systems in quantum theory
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
82B30 Statistical thermodynamics
70H11 Adiabatic invariants for problems in Hamiltonian and Lagrangian mechanics

Citations:

Zbl 07802657

References:

[1] Jakšić, V., Pillet, C.-A. and Tauber, C.: Approach to equilibrium in translation invariant quantum systems: some structural results. In this issue of Ann. H. Poincaré. · Zbl 07802657
[2] Benoist, T., Fraas, M., Jakšić, V., Pillet, C.-A.: Adiabatic theorem in quantum statistical mechanics. In preparation. · Zbl 1389.81010
[3] Born, M.; Fock, V., Beweis des Adiabatensatzes, Z. Phys., 51, 165-169 (1928) · JFM 54.0994.03 · doi:10.1007/bf01343193
[4] Kato, T., On the adiabatic theorem of quantum mechanics, J. Phys. Soc. Jpn., 5, 435-439 (1950) · doi:10.1143/JPSJ.5.435
[5] Avron, JE; Seiler, R.; Yaffe, LG, Adiabatic theorems and applications to the quantum Hall effect, Commun. Math. Phys., 110, 33-49 (1987) · Zbl 0626.58033 · doi:10.1007/bf01209015
[6] Joye, A.; Pfister, C-E, Exponentially small adiabatic invariant for the Schrödinger equation, Commun. Math. Phys., 140, 15-41 (1991) · Zbl 0755.35104 · doi:10.1007/bf02099288
[7] Nenciu, G., Linear adiabatic theory. Exponential estimates, Commun. Math. Phys., 152, 479-496 (1993) · Zbl 0768.34038 · doi:10.1007/bf02096616
[8] Avron, JE; Elgart, A., Adiabatic theorem without a gap condition, Commun. Math. Phys., 203, 445-463 (1999) · Zbl 0936.47047 · doi:10.1007/s002200050620
[9] Teufel, S., A note on the adiabatic theorem without gap condition, Lett. Math. Phys., 58, 261-266 (2001) · Zbl 1047.81020 · doi:10.1023/A:1014556511004
[10] Abou Salem, WK; Fröhlich, J., Status of the fundamental laws of thermodynamics, J. Stat. Phys., 126, 1045-1068 (2007) · Zbl 1152.82006 · doi:10.1007/s10955-006-9222-8
[11] Jakšić, V. and Pillet, C.-A.: Adiabatic theorem for KMS states. Unpublished · Zbl 0990.82017
[12] Jakšić, V.; Pillet, C-A, A note on the Landauer principle in quantum statistical mechanics, J. Math. Phys., 55 (2014) · Zbl 1298.81132 · doi:10.1063/1.4884475
[13] Ohya, M. and Petz, D.: Quantum entropy and its use. Texts and Monographs in Physics, Springer-Verlag, Berlin, (1993). doi:10.1007/978-3-642-57997-4 · Zbl 0891.94008
[14] Bachmann, S.; De Roeck, W.; Fraas, M., Adiabatic theorem for quantum spin systems, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.060201
[15] Bachmann, S.; De Roeck, W.; Fraas, M., The adiabatic theorem and linear response theory for extended quantum systems, Commun. Math. Phys., 361, 997-1027 (2018) · Zbl 1473.81080 · doi:10.1007/s00220-018-3117-9
[16] Greenblatt, R.L., Lange, M., Marcelli, G., Porta, M.: Adiabatic evolution of low-temperature many-body systems. Preprint (2022). doi:10.48550/arXiv.2211.16836
[17] Nachtergaele, B.; Sims, R.; Young, A., Quasi-locality bounds for quantum lattice systems. I. Lieb-Robinson bounds, quasi-local maps, and spectral flow automorphisms, J. Math. Phys., 60 (2019) · Zbl 1418.82010 · doi:10.1063/1.5095769
[18] Lanford, OE; Robinson, DW, Statistical mechanics of quantum spin systems, III. Commun. Math. Phys., 9, 327-338 (1968) · Zbl 0172.27702 · doi:10.1007/bf01654286
[19] Jakšić, V., Pillet, C.-A.: A note on the entropy production formula. In Advances in differential equations and mathematical physics (Birmingham, AL, 2002): Contemp. Math., vol. 327, Amer. Math. Soc. Providence, RI 2003, 175-180. doi:10.1090/conm/327/05813 · Zbl 1044.46050
[20] Dereziński, J.; Jakšić, V.; Pillet, C-A, Perturbation theory of \(W^*\)-dynamics, Liouvilleans and KMS-states, Rev. Math. Phys., 15, 447-489 (2003) · Zbl 1090.46049 · doi:10.1142/S0129055X03001679
[21] Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum-Statistical Mechanics. II. Texts and Monographs in Physics, Springer-Verlag, New York-Berlin, (1981). doi:10.1007/978-3-662-03444-6 · Zbl 0463.46052
[22] Israel, R.B.: Convexity in the Theory of Lattice Gases. Princeton Series in Physics, Princeton University Press, Princeton, N.J., (1979). · Zbl 0399.46055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.