×

Successive approximations for a differential equation in a Banach space via Constantin condition. (English) Zbl 1495.34083

This paper is concerned with the following Cauchy problem \[ \begin{cases} x^{\prime}=f(t, x), \\ x(0)=0, \end{cases} \] where \(f: I \times B \rightarrow E\) is a bounded continuous function. First, some sufficient conditions for the convergence of the sequence of successive approximations to the unique solution of first order Cauchy problem in a Banach space are discussed.
This paper provides an analogue of Constantin’s criterion for the considered problem when the function \(f\) taking values in the Banach space \(E\). The crucial ingredient in the proof of this aritcle’s main result is the Kuratowski measure of noncompactness. Authors also use the ball measure of noncompactness.
Main results:
Let \(u: I \rightarrow[0, \infty)\) be an absolutely continuous function with \(u(0)=0\) and \(u^{\prime}(t)>0\) a.e. on \(I\). Assume that \(f: I \times B \rightarrow E\) is a bounded continuous function and:
(H1) \(\|f(t, x)-f(t, y)\| \leq \frac{u^{\prime}(t)}{u(t)} \omega(\|x-y\|), \quad \text{for a.e.} t \in(0, a], x, y \in B\), where \(\omega \in \mathcal{F}_{2 b}\),
(H2) \(\lim _{t \rightarrow 0^{+}} \frac{\|f(t, x)\|}{u^{\prime}(t)}=0\) uniformly in \(x\) with \(\|x\| \leq b\). Then the considered problem has a unique solution \(x^{*}\) defined on J. Moreover, the successive approximations \(x_{n}\), given by \[ x_{0}=0, \quad x_{n}=F\left(x_{n-1}\right) \quad \text{ for } n \in \mathbb{N}, \] converge uniformly on \(J\) to \(x^{*}\).
One example illustrates the obtained theoretical results.

MSC:

34G20 Nonlinear differential equations in abstract spaces
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
47H08 Measures of noncompactness and condensing mappings, \(K\)-set contractions, etc.
34A45 Theoretical approximation of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Akhmerov, R. R.—Kamenskii, M. I.—Potapov, A. S.—Rodkina, A. E.—Sadovskii, B. N.: Measures of Noncompactness and Condensing Operators. Oper. Theory Adv. Appl. 55, Birkhäuser, Basel, 1992. · Zbl 0748.47045
[2] Ambrosetti, A.: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. · Zbl 0174.46001
[3] Athanassov, Z. S.: Uniqueness and convergence of succeessive approximations for ordinary differential equations, Math. Japon. 35 (1990), 351-367. · Zbl 0709.34002
[4] Banaś, J.: Measures of noncompactness in the study of solutions of nonlinear differential and integral equations, Cent. Eur. J. Math. 10 (2012), 2003-2011. · Zbl 1277.47067
[5] Banaś, J.—Goebel, K.: Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York-Basel, 1980. · Zbl 0441.47056
[6] Banaś, J.—Krajewska, M.: Existence of solutions for infinite systems of differential equations in spaces of tempered sequences, Electron. J. Differential Equations 2017 (2017), # 60. · Zbl 1370.34114
[7] Banaś, J.—Lecko, M.: Solvability of infinite systems of differential equations in Banach sequence spaces, J. Comput. Appl. Math. 137 (2001), 363-375. · Zbl 0997.34048
[8] Banaś, J.—Rzepka, B.: On solutions of infinite systems of integral equations of Hammerstein type, J. Nonlinear Convex Anal. 18 (2017), 261-276. · Zbl 1470.45009
[9] Constantin, A.: On Nagumo’s theorem, Proc. Japan Acad. 86, Ser. A (2010), 41-44. · Zbl 1192.34014
[10] Deimling, K.: Nonlinear Functional Analysis, Springer, Berlin, 1985. · Zbl 0559.47040
[11] Dutkiewicz, A.: On the convergence of successive approximations for a fractional differential equation in Banach spaces, Zeitschrift Anal. Anwend. 32 (2013), 301-307.
[12] Dutkiewicz, A: On the existence of solutions of ordinary differential equations in Banach spaces, Math. Slovaca 65 (2015), 573-582. · Zbl 1363.34201
[13] Ferreira, R. A. C.: A uniqueness result for a fractional differential equation, Fract. Calc. Appl. Anal. 15 (2012), 611-615. · Zbl 1312.34012
[14] Ferreira, R. A. C.: A Nagumo-type uniqueness result for an nth order differential equation, Bull. London Math. Soc. 45 (2013), 930-934. · Zbl 1295.34015
[15] Geyer, A.: A note on uniqueness and compact support of solutions in a recent model for tsunami background flows, Comm. Pure Appl. Anal. 11 (2012), 1431-1438. · Zbl 1372.76019
[16] Guo, D.—Lakshmikantham, V.—Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Math. Appl. 373, Kluwer, Dordrecht, 1996. · Zbl 0866.45004
[17] Hartman, P.: Ordinary Differential Equations, Wiley, New York-London-Sydney, 1964. · Zbl 0125.32102
[18] Hazarika, B.—Srivastava, H. M.—Arab, R.—Rabbani, M.: Existence of solution for an infinite system of nonlinear integral equations via measure of noncompactness and homotopy perturbation method to solve it, J. Comput. Appl. Math. 343 (2018), 341-352. · Zbl 1390.34033
[19] Heinz, H. P.: On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. 6 (1983), 1351-1371. · Zbl 0528.47046
[20] Mejstrik, T.: Some remarks on Nagumo’s theorem, Czechoslovak Math. J. 62 (137) (2012), 235-242. · Zbl 1249.34021
[21] Mursaleen, M.: Application of measure of noncompactness to infinite systems of differential equations, Canad. Math. Bull. 56 (2013), 388-394. · Zbl 1275.47133
[22] Mustafa, O. G.: On the uniqueness of flow in a recent tsunami model, Appl. Anal. 91 (2011), 1375-1378. · Zbl 1250.34039
[23] Mustafa, O. G.—O’Regan, D.: On the Nagumo uniqueness theorem, Nonlinear Anal. 74 (2011), 6383-6386. · Zbl 1252.34011
[24] Pianigiani, G.: Existence of solutions of ordinary differential equations in Banach spaces, Bull. Acad. Polon. Sci. Math. 23 (1975), 853-857. · Zbl 0317.34050
[25] Rozhan, J. R.: Existence of solutions for a class of system of functional integral equation via measure of noncompactness, J. Comput. Appl. Math. 313 (2017), 129-141. · Zbl 1505.47061
[26] Szufla, S.: On Volterra integral equations in Banach spaces, Funkcial. Ekvac. 20 (1977), 247-258. · Zbl 0379.45025
[27] Szufla, S.: On the existence of solutions of differential equations in Banach spaces, Bull. Acad. Polon. Sci. Math. 30 (1982), 507-515. · Zbl 0532.34045
[28] Szufla, S.—SzukaŁa, A.: An existence theorem for the equation x^(m) = f(t, x) in Banach spaces, Functiones et Approximatio 25 (1997), 181-188. · Zbl 0892.34053
[29] Xu, J.—Zhu, Y. M.—Liu, J. C.: Uniqueness and explosion time of solutions of stochastic differential equations driven by fractional Brownian motion, Acta Math. Sinica 28 (2012), 2407-2416. · Zbl 1364.60077
[30] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Springer, New York, 1993. · Zbl 0794.47033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.