×

A survey on measures of noncompactness with some applications in infinite systems of differential equations. (English) Zbl 07532963

Summary: In this chapter we present a brief survey of theory of measures of noncompactness and discuss some fixed point theorems of Darbo’s type. We describe some applications in the solvability of infinite systems of differential equations in classical sequence spaces.

MSC:

47H08 Measures of noncompactness and condensing mappings, \(K\)-set contractions, etc.
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] Aghajani, A., Allahyari, R., Mursaleen, M.: A generalization of Darbo���s fixed point theorem with application to the solvability of systems of integral equations. J. Comput. Appl. Math. 260, 68-77 (2014) · Zbl 1293.47048
[2] Aghajani, A.; Aliaskari, M., Measures of noncompactness in Banach algebra and application to solvability of integral equations in BC \(( {\mathbb{R}}_+ )\), Inf. Sci. Lett., 4, 2, 93-99 (2015)
[3] Aghajani, A.; Mursaleen, M.; Haghighi, AS, Fixed point theorems for Meir-Keeler condensing operator via measure of noncompactness, Acta Math. Sci., 35B, 3, 552-566 (2015) · Zbl 1340.47103 · doi:10.1016/S0252-9602(15)30003-5
[4] Aghajani, A.; Pourhadi, E.; Trujillo, JJ, Application of measure of noncompactness to a Cauchy problem for fractional differential equation in Banach spaces, Fract. Calc. Appl. Anal., 16, 4, 962-977 (2013) · Zbl 1312.47095 · doi:10.2478/s13540-013-0059-y
[5] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecturer Notes in Pure and Applied Mathematics, vol 60. Marcel Dekker, New York (1980) · Zbl 0441.47056
[6] Banaś, J.; Krajewska, M., Existence of solutions for infinite systems of differential equations in spaces of tempered sequences, Electron. J. Differ. Equ., 2017, 60, 1-28 (2017) · Zbl 1370.34114
[7] Banaś, J.; Lecko, M., Solvability of infinite system of differential equations in Banach sequence spaces, J. Comput. Appl. Math., 137, 363-375 (2001) · Zbl 0997.34048 · doi:10.1016/S0377-0427(00)00708-1
[8] Banaś, J.; Mursaleen, M., Sequence Spaces and Measures of noncompactness with Applications to Differential and Integral Equations (2014), New Delhi: Springer, New Delhi · Zbl 1323.47001 · doi:10.1007/978-81-322-1886-9
[9] Banaś, J., Nalepa, R.: On the space of functions with growths tempered by a modulus of continuity and its applications. J. Funct. Spaces Appl. 2013, Article ID 820437, 13 p. doi:10.1155/2013/820437 · Zbl 1275.46014
[10] Banaś, J., Nalepa, R.: On measures of noncompactness in the space of functions with tempered increments. J. Math. Anal. Appl. (2016). doi:10.1016/j.jmaa.2015.11.033 · Zbl 1355.46030
[11] Bugajewski, D.; Grzelaczyk, E., On the measures of noncompactness in some metric spaces, N. Z. J. Math., 27, 177-182 (1998) · Zbl 0954.54012
[12] Darbo, G., Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Un. Padova, 24, 84-92 (1955) · Zbl 0064.35704
[13] Goldenštein, LS; Gohberg, IT; Markus, AS, Investigation of some properties of bounded linear operators with their q-norms, Učen. Zap. Kishinevsk. Univ., 29, 29-36 (1957)
[14] Hadžić, O., Some properties of measure of noncompactness in paranormed spaces, Proc. Am. Math. Soc., 102, 4, 843-849 (1988) · Zbl 0653.47034 · doi:10.1090/S0002-9939-1988-0934854-1
[15] Kirk, WA; Sims, B.; Yuan, G., Xian-Zhi: the Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications, Nonlinear Anal., 39, 611-627 (2000) · Zbl 1068.47072 · doi:10.1016/S0362-546X(98)00225-9
[16] Klee, V., Leray-Schauder theory without local convexity, Math. Ann., 141, 286-296 (1960) · Zbl 0096.08001 · doi:10.1007/BF01360763
[17] Kuratowski, K., Sur les espaces complets, Fund. Math., 15, 301-309 (1930) · JFM 56.1124.04 · doi:10.4064/fm-15-1-301-309
[18] Kuratowski, K., Topology (1966), Warsaw: Academic Press, Warsaw · Zbl 0158.40901
[19] Lim, TC, On characterizations of Meir-Keeler contractive maps, Nonlinear Anal., 46, 113-120 (2001) · Zbl 1009.54044 · doi:10.1016/S0362-546X(99)00448-4
[20] Malkowsky, E., Rakočević, V.: On some results using measors of noncompactness. In: J. Banas et al. (eds.) Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness, pp. 127-180. Springer (2017) ISBN 978-981-10-3721-4 · Zbl 1460.47023
[21] Malkowsky, E., Rakočević, V.: Advanced Functional Analysis. CRC Press, Taylor and Francis Group, Boca Raton, London, New York (2019)13 978-1-1383-3715-2 · Zbl 1468.46001
[22] Meir, A.; Keeler, E., A theorem on contraction mappings, J. Math. Anal. Appl., 28, 326-329 (1969) · Zbl 0194.44904 · doi:10.1016/0022-247X(69)90031-6
[23] Mohiuddine, SA; Srivastava, HM; Alotaibi, A., Application of measures of noncompactness to the infinite system of second-order differential equations in \(\ell_p\) spaces, Adv. Differ. Equ., 2016, 317 (2016) · Zbl 1419.47009 · doi:10.1186/s13662-016-1016-y
[24] Mursaleen, M., Alotaibi, A.: Infinite system of differential equations in some BK spaces, Abstract Appl. Anal. 2012, Article ID 863483, 20 p. doi:10.1155/2012/863483 · Zbl 1258.28006
[25] Mursaleen, M.; Bilalov, B.; Rizvi, SMH, Applications of measures of noncompactness to infinite system of fractional differential equations, Filomat, 31, 11, 3421-3432 (2017) · Zbl 1499.34105 · doi:10.2298/FIL1711421M
[26] Mursaleen, M., Differential equations in classical sequence spaces, RACSAM, 111, 587-612 (2017) · Zbl 1404.34023 · doi:10.1007/s13398-016-0301-7
[27] Mursaleen, M.; Mohiuddine, SA, Applications of measures of noncompactness to the infinite system of differential equations in \(\ell_p\) spaces, Nonlinear Anal., 75, 2111-2115 (2012) · Zbl 1256.47060 · doi:10.1016/j.na.2011.10.011
[28] Mursaleen, M.; Rizvi, SMH, Solvability of infinite system of second order differential equations in \(c_0\) and \(\ell_1\) by Meir-Keeler condensing operator, Proc. Am. Math. Soc., 144, 10, 4279-4289 (2016) · Zbl 1385.47021 · doi:10.1090/proc/13048
[29] Mursaleen, M.; Rizvi, SMH; Samet, B., Solvability of a class of boundary value problems in the space of convergent sequences, Appl. Anal., 97, 10, 1829-1845 (2018) · Zbl 1396.93063 · doi:10.1080/00036811.2017.1343464
[30] Mursaleen, M.; Porhadi, E.; Saadati, R., Solvability of infinite systems of second-order differential equations with boundary conditions in \(\ell_p\), Quaest. Math., 43, 9, 1311-1330 (2020) · Zbl 1484.34062 · doi:10.2989/16073606.2019.1617800
[31] Pouhadi, E.; Mursaleen, M.; Saadati, R., On a class of infinite system of third-order differential equations in \(\ell_p\) via measure of noncompactness, Filomat, 34, 11, 3861-3870 (2020) · Zbl 1513.34068 · doi:10.2298/FIL2011861P
[32] Saadati, R., Pourhadi, E., Mursaleen, M.: Solvability of infinite systems of third-order differential equations in \(c_0\) by Meir-Keeler condensing operators. J. Fixed Point Theory Appl. 21(2), Article number 64 (2019) · Zbl 1476.47101
[33] Schauder, J., Der Fixpunktsatz in Funktionalräumen, Stud. Math., 2, 171-180 (1930) · JFM 56.0355.01 · doi:10.4064/sm-2-1-171-180
[34] Suzuki, T., Fixed point theorem for asymptotic contraction of Meir-Keeler type in complete metric spaces, Nonlinear Anal., 64, 971-978 (2006) · Zbl 1101.54047 · doi:10.1016/j.na.2005.04.054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.