×

Analysis of dynamic stress concentration in three different types of poro-viscoelastic rock medium. (English) Zbl 07841725

Summary: The propagation of shear waves inside/at the Earth’s crust during earthquake may cause the progression of punch in the rock medium. In this study, the movement of semi-infinite punch due to the propagation of the shear wave in a pre-stressed vertically transversely isotropic poro-viscoelastic medium has been analyzed. Based on Wiener-Hopf technique and two-sided Fourier integral transformations, the dynamic stress concentration due to moving punch is determined in closed form. The significant effects of various affecting parameters viz. velocity of moving punch, horizontal initial stress, vertical initial stress, anisotropy parameter, porosity, and viscoelasticity on dynamic stress concentration have been discussed. It is noteworthy that as the punch propagates with higher velocity, dynamic stress concentration in the considered poro-viscoelastic medium escalates. It is also found that horizontal tensile and vertical compressive initial stresses have an adverse impact on the dynamic stress concentration. On the other hand, the horizontal compressive and vertical tensile initial stresses have a favorable influence on the dynamic stress concentration. Also, its values increase with the increase of porosity, while it gets decreased as anisotropic parameter prevails in the considered medium. The behavior of dynamic stress concentration in three different types of pre-stressed vertically transversely isotropic poro-viscoelastic media viz. sandstone (a sedimentary rock), granite (an igneous rock), and marble (a metamorphic rock) has been compared. From this comparison, it is obtained that the dynamic stress concentration attains maximum value if the rock medium is marble and minimum value if the rock medium is sandstonel. Some graphical illustrations and numerical computations have also been established. Furthermore, some important properties are identified from the obtained dynamic stress concentration expressions.

MSC:

74-XX Mechanics of deformable solids
92-XX Biology and other natural sciences
Full Text: DOI

References:

[1] Lay, T.; Wallace, T., Modern global seismology, (1995), San Diego: Academic Press, San Diego
[2] Shaw, RP; Bugl, P., Transmission of plane waves through layered linear viscoelastic media, J Acoust Soc Am, 46, 649-654, (1969) · doi:10.1121/1.1911744
[3] Cooper, HF, Reflection and transmission of oblique plane waves at a plane interface between viscoelastic media, J Acoust Soc Am, 42, 1064-1069, (1967) · Zbl 0166.21501 · doi:10.1121/1.1910691
[4] Schoenberg, M., Transmission and reflection of plane waves at an elastic-viscoelastic interface, Geophys J R Astron Soc, 25, 35-47, (1971) · Zbl 0246.73033 · doi:10.1111/j.1365-246X.1971.tb02329.x
[5] Kaushik, VP; Chopra, SD, Reflection and transmission of general plane SH-waves at the plane interface between two heterogeneous and homogeneous viscoelastic media, Geophys Res Bull, 20, 1-20, (1983)
[6] Borcherdt, RD, Rayleigh-type surface wave on a linear viscoelastic half-space, J Acoust Soc Am, 54, 6, 1651-1653, (1973) · Zbl 0275.73021 · doi:10.1121/1.1914463
[7] Gogna, ML; Chander, S., Reflection and transmission of SH-waves at an interface between anisotropic inhomogeneous elastic and viscoelastic halfspaces, Acta Geophys Pol, 33, 357-375, (1985)
[8] Červený, V., Inhomogeneous harmonic plane waves in viscoelastic anisotropic media, Stud Geophys Geod, 48, 167-186, (2004) · doi:10.1023/B:SGEG.0000015590.17664.70
[9] Romeo, M., Interfacial viscoelastic SH waves, Int J Solids Struct, 40, 2057-2068, (2003) · Zbl 1041.74038 · doi:10.1016/S0020-7683(03)00062-3
[10] Manolis, GD; Shaw, RP, Harmonic wave propagation through viscoelastic heterogeneous media exhibiting mild stochasticity - II, Appl Soil Dyn Earthq Eng, 15, 2, 129-139, (1996) · doi:10.1016/0267-7261(95)00024-0
[11] Miklowitz, J., Plane-stress unloading waves emanating from a suddenly punched hole in a stretched elastic plate, ASME J Appl Mech, 27, 165-171, (1960) · Zbl 0090.18002 · doi:10.1115/1.3643892
[12] Negi, A.; Singh, AK; Koley, S., On the scattering of Love waves in a layered transversely isotropic irregular poro-viscoelastic composite rock structure, J Earthq Eng, 27, 1900-1919, (2002) · doi:10.1080/13632469.2022.2089406
[13] Singh, AK; Kumar, S.; Chattopadhyay, A., Effect of irregularity and heterogeneity on the stresses produced due to a normal moving load on a rough monoclinic half-space, Meccanica, 49, 12, 2861-2878, (2014) · Zbl 1306.74003 · doi:10.1007/s11012-014-0033-8
[14] Gupta, S.; Das, S.; Dutta, R., Nonlocal stress analysis of an irregular FGFPM structure imperfectly bonded to fiber-reinforced substrate subjected to moving load, Soil Dyn Earthq Eng, 147, (2021) · doi:10.1016/j.soildyn.2021.106744
[15] Gupta, S.; Dutta, R.; Das, S., Analytical approach to determine the impact of line source on SH-wave propagation in an anisotropic poro-viscoelastic layered structure in the context of Eringen’s nonlocal elasticity theory, Soil Dyn Earthq Eng, 151, (2021) · doi:10.1016/j.soildyn.2021.106987
[16] Gupta S, Dutta R, Das S (2023) Flexoelectric effect on SH-wave propagation in functionally graded fractured porous sedimentary rocks with interfacial irregularity. J Vib Eng Technol 1-21
[17] Biot, MA, The influence of initial stress on elastic waves, J Appl Phys, 11, 8, 522-530, (1940) · JFM 66.1022.02 · doi:10.1063/1.1712807
[18] Biot, MA, Theory of elastic waves in a fluid-saturated porous solid, I. Low frequency range, J Acoust Soc Am, 28, 2, 168-178, (1956) · doi:10.1121/1.1908239
[19] Biot, MA, Theory of elastic waves in a fluid-saturated porous solid, II. High frequency range, J Acoust Soc Am, 28, 2, 179-191, (1956) · doi:10.1121/1.1908241
[20] Biot, MA, Mechanics of deformations and acoustic propagation in porous media, J Appl Phys, 33, 4, 1482-1498, (1962) · Zbl 0104.21401 · doi:10.1063/1.1728759
[21] Biot, MA, Generalized theory of acoustic propagation in porous media, J Acoust Soc Am, 34, 9, 1254-1264, (1962) · doi:10.1121/1.1918315
[22] Deresiewicz, H.; Skalak, R., On uniqueness in dynamic poroelasticity, Bull Seismol Soc Am, 53, 4, 783-788, (1963) · doi:10.1785/BSSA0530040783
[23] Deresiewicz, H., The effect of boundaries on wave propagation in a liquid-filled porous solid: IX. The Love waves in a porous internal stratum, Bull Seismol Soc Am, 55, 5, 919-923, (1965) · doi:10.1785/BSSA0550050919
[24] Gurevich, B.; Schoenberg, M., Interface conditions for Biots equations of poroelasticity, J Acoust Soc Am, 105, 5, 2585-2589, (1999) · doi:10.1121/1.426874
[25] Chattopadhyay, A.; De, RK, Love waves in a porous layer with irregular interface, Int J Eng Sci, 21, 11, 1295-1303, (1983) · Zbl 0524.73025 · doi:10.1016/0020-7225(83)90126-X
[26] Matczynski, M., Elastic wedge with discontinuous boundary conditions, Arch Mechaniki Stosowa, 15, 6, 833-855, (1963) · Zbl 0166.43601
[27] Sharma, MD; Gogna, ML, Propagation of Love waves in an initially stressed medium consist of a slow elastic layer lying over a liquid-saturated porous solid half-space, J Acoust Soc Am, 89, 6, 2584-2588, (1991) · doi:10.1121/1.400697
[28] Son, MS; Kang, YJ, Propagation of shear waves in a poroelastic layer constrained between two elastic layers, Appl Math Model, 36, 3685-3695, (2012) · Zbl 1252.76083 · doi:10.1016/j.apm.2011.11.008
[29] Dey, S.; Sarkar, MG, Torsional surface waves in an initially stressed anisotropic porous medium, J Eng Mech, 128, 2, 184-189, (2002) · doi:10.1061/(ASCE)0733-9399(2002)128:2(184)
[30] Berryman, JG, Poroelastic response of orthotropic fractured porous media, Transport Porous Med, 93, 2, 293-307, (2012) · doi:10.1007/s11242-011-9922-7
[31] Iwona, SK; Idziak, AF, Anisotropy of elastic properties of rock mass induced by cracks, Acta Geodyn Geomater, 5, 2, 153-159, (2008)
[32] Dhaliwal, RS; Singh, BM, Closed form solutions to dynamic punch problems by integral transform methods, ZAMM, 64, 1, 31-34, (1984) · Zbl 0533.73097 · doi:10.1002/zamm.19840640106
[33] Liu, D.; Gai, B.; Tao, G., Application of the method of complex functions to dynamic stress concentration, Wave Motion, 4, 3, 293-304, (1982) · Zbl 0484.73007 · doi:10.1016/0165-2125(82)90025-7
[34] Singh, AK; Negi, A.; Yadav, RP; Verma, AK, Dynamic stress concentration in pre-stressed poroelastic media due to moving punch influenced by shear wave, J Seismol, 22, 1263-1274, (2018) · doi:10.1007/s10950-018-9766-5
[35] Dutta, R.; Das, S.; Gupta, S.; Singh, A.; Chaudhary, H., Nonlocal fiber-reinforced double porous material structure under fractional-order heat and mass transfer, Int J Numer Methods Heat Fluid Flow, 33, 11, 3608-3641, (2023) · doi:10.1108/HFF-05-2023-0295
[36] Gupta, S.; Das, S.; Dutta, R., Case-wise analysis of Love-type wave propagation in an irregular fissured porous stratum coated by a sandy layer, Multidiscip Model Mater Struct, 17, 1119-1141, (2021) · doi:10.1108/MMMS-01-2021-0003
[37] Gupta, S.; Das, S.; Dutta, R., Impact of point source on fissured poroelastic medium: Green’s function approach, Eng Comput, (2020) · doi:10.1108/EC-11-2019-0515
[38] Li, S.; Peng, W.; Yuanqiang, C.; Zhigang, C., Multi-transmitting formula for finite element modeling of wave propagation in a saturated poroelastic medium, Soil Dyn Earthq Eng, 80, 11-24, (2016) · doi:10.1016/j.soildyn.2015.09.021
[39] Chatelin, S.; Gennisson, J.; Bernal, M.; Tanter, M.; Pernot, M., Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium, Phys Med Biol, 60, 3639, (2015) · doi:10.1088/0031-9155/60/9/3639
[40] Ting, TCT, A moving punch on an infinite viscoelastic layer, Rheol Acta, 12, 2, 150-154, (1973) · doi:10.1007/BF01635095
[41] Singh, AK; Parween, Z.; Chatterjee, M.; Chattopadhyay, A., Love-type wave propagation in a pre-stressed viscoelastic medium influenced by smooth moving punch, Waves Random Complex Media, 25, 2, 268-285, (2015) · Zbl 1378.74028 · doi:10.1080/17455030.2015.1015182
[42] Singh, AK; Kumar, S.; Chattopadhyay, A., Effect of smooth moving punch in an initially stressed monoclinic magnetoelastic crystalline medium due to shear wave propagation, J Vib Control, 22, 11, 2719-2730, (2016) · Zbl 1365.74133 · doi:10.1177/1077546314549588
[43] Singh, AK; Singh, AK, Dynamic stress concentration of a smooth moving punch influenced by a shear wave in an initially stressed dry sandy layer, Acta Mech, 233, 5, 1757-1768, (2022) · Zbl 1491.74078 · doi:10.1007/s00707-022-03197-4
[44] Titchmarsh, EC, Theory of Fourier integrals, (1939), London: Oxford University Press, London · JFM 65.0302.01
[45] Batugin SA, Nirenburg RK (1972) Approximate relation between the elastic constants of anisotropic rocks and anisotropy parameters. Soviet Mining 8(1):5-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.