×

Marching schemes for Cauchy wave propagation problems in laterally varying waveguides. (English) Zbl 1448.65204

Summary: This paper intends to develop practical marching schemes for Cauchy problems of the Helmholtz equation in laterally varying waveguides. We arrive at a stable representation of the marching solutions in waveguides. Based on the representation, a second-order marching scheme is then constructed to eliminate the ill-conditioning and compute the wave propagation in waveguides with laterally variable mediums. In the end, extensive experiments are implemented to verify the efficiency and accuracy of the marching scheme in various waveguides, and we also point out the application scope of the scheme.

MSC:

65N20 Numerical methods for ill-posed problems for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35R25 Ill-posed problems for PDEs

Software:

OASES
Full Text: DOI

References:

[1] G. Beylkin and K. Sandberg, Wave propagation using bases for bandlimited functions, Wave Motion 41 (2005), no. 3, 263-291.; Beylkin, G.; Sandberg, K., Wave propagation using bases for bandlimited functions, Wave Motion, 41, 3, 263-291 (2005) · Zbl 1189.76456
[2] M. D. Collins and W. A. Kuperman, Inverse problems in ocean acoustics, Inverse Problems 10 (1994), no. 5, 1023-1040.; Collins, M. D.; Kuperman, W. A., Inverse problems in ocean acoustics, Inverse Problems, 10, 5, 1023-1040 (1994) · Zbl 0807.35155
[3] M. D. Collins and W. L. Siegmann, Parabolic Wave Equations with Applications, Springer, New York, 2001.; Collins, M. D.; Siegmann, W. L., Parabolic Wave Equations with Applications (2001) · Zbl 1433.35001
[4] T. Delillo, V. Isakov, N. Valdivia and L. Wang, The detection of the source of acoustical noise in two dimensions, SIAM J. Appl. Math. 61 (2001), no. 6, 2104-2121.; Delillo, T.; Isakov, V.; Valdivia, N.; Wang, L., The detection of the source of acoustical noise in two dimensions, SIAM J. Appl. Math., 61, 6, 2104-2121 (2001) · Zbl 0983.35149
[5] T. DeLillo, V. Isakov, N. Valdivia and L. Wang, The detection of surface vibrations from interior acoustical pressure, Inverse Problems 19 (2003), no. 3, 507-524.; DeLillo, T.; Isakov, V.; Valdivia, N.; Wang, L., The detection of surface vibrations from interior acoustical pressure, Inverse Problems, 19, 3, 507-524 (2003) · Zbl 1033.76053
[6] L. Fishman, One-way wave propagation methods in direct and inverse scalar wave propagation modeling, Radio Sci. 28 (1993), 865-876.; Fishman, L., One-way wave propagation methods in direct and inverse scalar wave propagation modeling, Radio Sci., 28, 865-876 (1993)
[7] F. B. Jensen, W. A. Kuperman, M. B. Porter and H. Schmidt, Computational Ocean Acoustics, AIP Ser. Modern Acoustics Signal Process., American Institute of Physics, New York, 1994.; Jensen, F. B.; Kuperman, W. A.; Porter, M. B.; Schmidt, H., Computational Ocean Acoustics (1994) · Zbl 0858.76002
[8] B. Jin and Y. Zheng, A meshless method for some inverse problems associated with the Helmholtz equation, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 19-22, 2270-2288.; Jin, B.; Zheng, Y., A meshless method for some inverse problems associated with the Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 195, 19-22, 2270-2288 (2006) · Zbl 1123.65111
[9] C. S. Kenney and A. J. Laub, The matrix sign function, IEEE Trans. Automat. Control 40 (1995), no. 8, 1330-1348.; Kenney, C. S.; Laub, A. J., The matrix sign function, IEEE Trans. Automat. Control, 40, 8, 1330-1348 (1995) · Zbl 0830.93022
[10] C. H. Knightly and D. F. St. Mary, Stable marching schemes based on elliptic models of wave propagation, J. Acoustical Soc. Amer. 93 (1993), 1866-1872.; Knightly, C. H.; Mary, D. F. St., Stable marching schemes based on elliptic models of wave propagation, J. Acoustical Soc. Amer., 93, 1866-1872 (1993)
[11] P. Li, Z. Chen and J. Zhu, An operator marching method for inverse problems in range-dependent waveguides, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 49-50, 4077-4091.; Li, P.; Chen, Z.; Zhu, J., An operator marching method for inverse problems in range-dependent waveguides, Comput. Methods Appl. Mech. Engrg., 197, 49-50, 4077-4091 (2008) · Zbl 1194.76209
[12] P. Li, K. Liu, W. Zuo and W. Zhong, Error analysis for the operator marching method applied to range dependent waveguides, J. Inverse Ill-Posed Probl. 24 (2016), no. 5, 625-636.; Li, P.; Liu, K.; Zuo, W.; Zhong, W., Error analysis for the operator marching method applied to range dependent waveguides, J. Inverse Ill-Posed Probl., 24, 5, 625-636 (2016) · Zbl 1457.65171
[13] P. Li, W. Z. Zhong, G. S. Li and Z. H. Chen, A numerical local orthogonal transform method for stratified waveguides, J. Zhejiang Univ. Sci. (C) 11 (2010), no. 12, 998-1008.; Li, P.; Zhong, W. Z.; Li, G. S.; Chen, Z. H., A numerical local orthogonal transform method for stratified waveguides, J. Zhejiang Univ. Sci. (C), 11, 12, 998-1008 (2010)
[14] Y. Y. Lu, One-way large range step methods for Helmholtz waveguides, J. Comput. Phys. 152 (1999), no. 1, 231-250.; Lu, Y. Y., One-way large range step methods for Helmholtz waveguides, J. Comput. Phys., 152, 1, 231-250 (1999) · Zbl 0944.65110
[15] Y. Y. Lu and J. R. McLaughlin, The Riccati method for the Helmholtz equation, J. Acoustical Soc. Amer. 100 (1996), 1432-1446.; Lu, Y. Y.; McLaughlin, J. R., The Riccati method for the Helmholtz equation, J. Acoustical Soc. Amer., 100, 1432-1446 (1996)
[16] Y. Y. Lu, J. Huang and J. R. McLauphlin, Local orthogonal transformation and one-way methods for acoustics waveguides, Wave Motion 34 (2001), 193-207.; Lu, Y. Y.; Huang, J.; McLauphlin, J. R., Local orthogonal transformation and one-way methods for acoustics waveguides, Wave Motion, 34, 193-207 (2001) · Zbl 1163.74396
[17] Y. Y. Lu and J. Zhu, A local orthogonal transform for acoustic waveguides with an interval interface, J. Comput. Acoust. 12 (2004), no. 1, 37-53.; Lu, Y. Y.; Zhu, J., A local orthogonal transform for acoustic waveguides with an interval interface, J. Comput. Acoust., 12, 1, 37-53 (2004) · Zbl 1256.76064
[18] F. Natterer and F. Wübbeling, A propagation-backpropagation method for ultrasound tomography, Inverse Problems 11 (1995), no. 6, 1225-1232.; Natterer, F.; Wübbeling, F., A propagation-backpropagation method for ultrasound tomography, Inverse Problems, 11, 6, 1225-1232 (1995) · Zbl 0839.35146
[19] F. Natterer and F. Wübbeling, Marching schemes for inverse acoustic scattering problems, Numer. Math. 100 (2005), no. 4, 697-710.; Natterer, F.; Wübbeling, F., Marching schemes for inverse acoustic scattering problems, Numer. Math., 100, 4, 697-710 (2005) · Zbl 1112.76069
[20] B. N. Parlett, The Rayleigh quotient iteration and some generalizations for nonnormal matrices, Math. Comp. 28 (1974), 679-693.; Parlett, B. N., The Rayleigh quotient iteration and some generalizations for nonnormal matrices, Math. Comp., 28, 679-693 (1974) · Zbl 0293.65023
[21] K. Sandberg, Forward and Inverse Wave Propagation Using Bandlimited Functions and a Fast Reconstruction Algorithm for Electron Microscopy, ProQuest LLC, Ann Arbor, 2003.; Sandberg, K., Forward and Inverse Wave Propagation Using Bandlimited Functions and a Fast Reconstruction Algorithm for Electron Microscopy (2003)
[22] K. Sandberg and G. Beylkin, Full-wave-equation depth extrapolation for migrations, Geophys. 74 (2009), no. 6, 121-128.; Sandberg, K.; Beylkin, G., Full-wave-equation depth extrapolation for migrations, Geophys., 74, 6, 121-128 (2009) · Zbl 1189.76456
[23] K. Sandberg, G. Beylkin and A. Vassiliou, Full-wave-equation depth migration using multiple reflections, preprint (2010), .; <element-citation publication-type=”other“> Sandberg, K.Beylkin, G.Vassiliou, A.Full-wave-equation depth migration using multiple reflectionsPreprint2010 <ext-link ext-link-type=”uri“ xlink.href=”>http://www.geoenergycorp.com/publications/SEG2010_Two_Way_WEM.pdf
[24] R. C. Song, J. X. Zhu and X. C. Zhang, Full-vectorial modal analysis for circular optical waveguides based on the multidomain Chebyshev pseudospectral method, J. Optical Soc. Amer. B 27 (2010), no. 9, 1722-1730.; Song, R. C.; Zhu, J. X.; Zhang, X. C., Full-vectorial modal analysis for circular optical waveguides based on the multidomain Chebyshev pseudospectral method, J. Optical Soc. Amer. B, 27, 9, 1722-1730 (2010)
[25] M. Vögeler, Reconstruction of the three-dimensional refractive index in electromagnetic scattering by using a propagation-backpropagation method, Inverse Problems 19 (2003), no. 3, 739-753.; Vögeler, M., Reconstruction of the three-dimensional refractive index in electromagnetic scattering by using a propagation-backpropagation method, Inverse Problems, 19, 3, 739-753 (2003) · Zbl 1160.78308
[26] Z. Wang and S. F. Wu, Helmholtz equation-least-squares method for reconstructing the acoustic pressure field, J. Acoustical Soc. Amer. 102 (1997), no. 4, 2020-2032.; Wang, Z.; Wu, S. F., Helmholtz equation-least-squares method for reconstructing the acoustic pressure field, J. Acoustical Soc. Amer., 102, 4, 2020-2032 (1997)
[27] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.; Wilkinson, J. H., The Algebraic Eigenvalue Problem (1965) · Zbl 0258.65037
[28] S. F. Wu and J. Yu, Reconstructing interior acoustic pressure fields via Helmholtz equation least-squares method, J. Acoustical Soc. Amer. 104 (1998), no. 4, 2054-2060.; Wu, S. F.; Yu, J., Reconstructing interior acoustic pressure fields via Helmholtz equation least-squares method, J. Acoustical Soc. Amer., 104, 4, 2054-2060 (1998)
[29] X. Zhang, Mapped barycentric Chebyshev differentiation matrix method for the solution of regular Sturm-Liouville problems, Appl. Math. Comput. 217 (2010), no. 5, 2266-2276.; Zhang, X., Mapped barycentric Chebyshev differentiation matrix method for the solution of regular Sturm-Liouville problems, Appl. Math. Comput., 217, 5, 2266-2276 (2010) · Zbl 1202.65101
[30] J. Zhu and P. Li, Local orthogonal transform for a class of acoustic waveguides, Progr. Natur. Sci. (English Ed.) 17 (2007), no. 10, 1136-1146.; Zhu, J.; Li, P., Local orthogonal transform for a class of acoustic waveguides, Progr. Natur. Sci. (English Ed.), 17, 10, 1136-1146 (2007)
[31] J. Zhu and Y. Lu, Large range step method for acoustic waveguide with two layer media, Progr. Natur. Sci. (English Ed.) 12 (2002), no. 11, 820-825.; Zhu, J.; Lu, Y., Large range step method for acoustic waveguide with two layer media, Progr. Natur. Sci. (English Ed.), 12, 11, 820-825 (2002) · Zbl 1035.78020
[32] J. Zhu and Y. Y. Lu, Validity of one-way models in the weak range dependence limit, J. Comput. Acoust. 12 (2004), no. 1, 55-66.; Zhu, J.; Lu, Y. Y., Validity of one-way models in the weak range dependence limit, J. Comput. Acoust., 12, 1, 55-66 (2004) · Zbl 1256.76067
[33] J. X. Zhu and P. Li, The mathematical treatment of wave propagation in the acoustical waveguides with n curved interfaces, J. Zhejiang Univ. Sci. (A) 9 (2008), no. 10, 1463-1472.; Zhu, J. X.; Li, P., The mathematical treatment of wave propagation in the acoustical waveguides with n curved interfaces, J. Zhejiang Univ. Sci. (A), 9, 10, 1463-1472 (2008) · Zbl 1152.76469
[34] J. X. Zhu and R. C. Song, Fast and stable computation of optical propagation in micro-waveguides with loss, Mircroelectronics Reliab. 49 (2009), no. 12, 1529-1536.; Zhu, J. X.; Song, R. C., Fast and stable computation of optical propagation in micro-waveguides with loss, Mircroelectronics Reliab., 49, 12, 1529-1536 (2009)
[35] J. X. Zhu and Q. X. Zhou, Eigenvalue computation in slab waveguides with some perfectly matched layer, Proc. SPIE 5279 (2004), 172-180.; Zhu, J. X.; Zhou, Q. X., Eigenvalue computation in slab waveguides with some perfectly matched layer, Proc. SPIE, 5279, 172-180 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.