×

Exactly solvable quadratic differential equation systems through generalized inversion. (English) Zbl 1517.34020

An autonomous system of the first-order differential equations with quadratic right-hand side is considered. The system is nonlinear and its solution cannot be written in symbolic form, in general. However, there exists a subclass of quadratic systems which can be transformed to a linear system of differential equations being integrable and just such quadratic differential systems are discussed. The paper presents a detailed description of an algorithm which enables to check whether such B-transformation may be found and to construct it. As a general solution to a linear differential system with constant coefficients may be easily found the solution to the original quadratic system can be also obtained. Efficiency of the algorithm is demonstrated by three examples of two- and three-dimensional quadratic systems. It should be noted also that the algorithm may be used for analysis of the higher order quadratic systems although the calculations may become quite cumbersome.

MSC:

34A34 Nonlinear ordinary differential equations and systems
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34A05 Explicit solutions, first integrals of ordinary differential equations

References:

[1] Giacomini, H., Giné, J., Grau, M.: Integrability of planar polynomial differential systems through linear differential equations. Roc. Mt. J. Math. 36(2), 457-485 (2006). http://www.jstor.org/stable/44239122 · Zbl 1140.34001
[2] Giacomini, H.; Giné, J.; Grau, M., Linearizable planar differential systems via the inverse integrating factor, J. Phys. A Math. Theor., 41, 13 (2008) · Zbl 1161.34023 · doi:10.1088/1751-8113/41/13/135205
[3] Mardesic, P.; Rousseau, C.; Toni, B., Linearization of isochronous centers, J. Differ. Equ., 121, 1, 67-108 (1995) · Zbl 0830.34023 · doi:10.1006/jdeq.1995.1122
[4] Giné, J.; Grau, M., Characterization of isochronous foci for planar analytic differential systems, Proc. R. Soc. Edinb. Sect. A Math., 135, 5, 985-998 (2005) · Zbl 1092.34014 · doi:10.1017/S0308210500004236
[5] Iserles, A., A First Course in the Numerical Analysis of Differential Equations (1996), Cambridge: Cambridge University Press, Cambridge
[6] Ghomanjani, F., Shateyi, S.: Solving a quadratic riccati differential equation, multi-pantograph delay differential equations, and optimal control systems with pantograph delays. Axioms 9(3) (2020). doi:10.3390/axioms9030082. https://www.mdpi.com/2075-1680/9/3/82
[7] Polyanin, AD; Zaitsev, VF, Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems (2017), Boca Raton: Chapman and Hall/CRC, Boca Raton · doi:10.1201/9781315117638
[8] Champagnat, N.; Jabin, P-E; Raoul, G., Convergence to equilibrium in competitive Lotka-Volterra and chemostat systems, C. R. Math., 348, 23-24, 1267-1272 (2010) · Zbl 1213.34066 · doi:10.1016/j.crma.2010.11.001
[9] Vakulenko, S.; Grigoriev, D.; Weber, A., Reduction methods and chaos for quadratic systems of differential equations, Stud. Appl. Math., 135, 3, 225-247 (2015) · Zbl 1359.92036 · doi:10.1111/sapm.12083
[10] Coppel, W., A new class of quadratic systems, J. Differ. Equ., 92, 360-372 (1991) · Zbl 0733.58037 · doi:10.1016/0022-0396(91)90054-D
[11] Elliott, D., Bilinear Control Systems: Matrices in Action. Applied Mathematical Sciences (2009), Berlin: Springer, Berlin · Zbl 1171.93003 · doi:10.1023/b101451
[12] Bácsi, A.; Moca, CP; Dóra, B., Dissipation-induced Luttinger liquid correlations in a one-dimensional Fermi gas, Phys. Rev. Lett., 124, 136401 (2020) · doi:10.1103/PhysRevLett.124.136401
[13] Date, T., Classification and analysis of two-dimensional real homogeneous quadratic differential equation systems, J. Differ. Equ., 32, 3, 311-334 (1979) · Zbl 0378.34014 · doi:10.1016/0022-0396(79)90037-8
[14] Schlomiuk, D.; Vulpe, N., Geometry of quadratic differential systems in the neighborhood of infinity, J. Differ. Equ., 215, 2, 357-400 (2005) · Zbl 1090.34024 · doi:10.1016/j.jde.2004.11.001
[15] Chavarriga, J., García, B., Llibre, J., [del Río], J.S.P., Rodríguez, J.A.: Polynomial first integrals of quadratic vector fields. J. Differ. Equ. 230(2), 393-421. doi:10.1016/j.jde.2006.07.022 · Zbl 1117.34035
[16] Reyn, J., Phase Portraits of Planar Quadratic Systems (2007), Berlin: Springer, Berlin · Zbl 1123.34002
[17] Llibre, J.; Pereira, WF; Pessoa, C., Phase portraits of Bernoulli quadratic polynomial differential systems, Electron. J. Differ. Equ., 2020, 48, 1-19 (2020) · Zbl 1457.34047
[18] Llibre, J.; Valls, C., Phase portraits of the complex Abel polynomial differential systems, Chaos Solitons Fract., 148, 111050 (2021) · Zbl 1485.34099 · doi:10.1016/j.chaos.2021.111050
[19] Ramírez, JL; Rubiano, GN, A geometrical construction of inverse points with respect to an ellipse, Int. J. Math. Educ. Sci. Technol., 45, 8, 1254-1259 (2014) · Zbl 1316.97003 · doi:10.1080/0020739X.2014.914255
[20] Ramírez, JL; Rubiano, GN, A generalization of the spherical inversion, Int. J. Math. Educ. Sci. Technol., 48, 1, 132-149 (2017) · Zbl 1396.97010 · doi:10.1080/0020739X.2016.1201598
[21] Feng, JE; Lam, J.; Wei, Y., Spectral properties of sums of certain Kronecker products, Linear Algebra Appl., 431, 9, 1691-1701 (2009) · Zbl 1191.15007 · doi:10.1016/j.laa.2009.06.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.