×

Dynamic analysis of conversion from a drug-sensitivity strain to a drug-resistant strain. (English) Zbl 1407.34074

Summary: In this paper, a mathematical model of conversion from a drug-sensitivity strain to a drug-resistant strain is given to investigate how antibiotic usage may be optimized to preserve or restore antibiotic effectiveness. This novel theoretical framework could result in an optimal criterion on how to reduce the drug resistance to a reasonable range by using the antibiotic dressing strategy. The sufficient conditions of existence of order-1 periodic solution are obtained in view of the geometrical theory of the semi-continuous dynamical system and the qualitative properties of the corresponding continuous system. The stability of the order-1 periodic solution is proved by means of H. Guo et al. [“Qualitative analysis of impulsive state feedback control to an algae-fish system with bistable property”, Appl. Math. Comput. 271, 905–922 (2015; doi:10.1016/j.amc.2015.09.046)]. Finally, our results are confirmed by means of numerical simulations.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
92D25 Population dynamics (general)
34A37 Ordinary differential equations with impulses
92C50 Medical applications (general)
34D20 Stability of solutions to ordinary differential equations
34H05 Control problems involving ordinary differential equations
Full Text: DOI

References:

[1] Bonhoeffer, S., Lipsitch, M. and Levin, B. R., Evaluating treatment protocols to prevent antibiotic resistance, Proc. Natl. Acad. Sci.94(22) (1997) 12106-12111.
[2] Kitayimbwa, J. M., Mugisha, J. Y. T. and Saenz, R. A., Estimation of the HIV-1 backward mutation rate from transmitted drug-resistant strains, Theor. Popul. Biol.112 (2016) 33-42. · Zbl 1367.92076
[3] Ibargüen-Mondragön, E., Mosquera, S., Cerón, M., Burbano-Rosero, E. M., Hidalgo-Bonilla, S. P., Esteva, L. and Romero-Leitón, J. P., Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations, Biosystems117 (2014) 60-67.
[4] Chen, Z. Z., Hsu, S. B. and Yang, Y., The morbidostat: A bio-reactor promotes selection for drug resistance in bacteria, SIAM J. Appl. Math.77 (2017) 470-499. · Zbl 1362.92040
[5] Lou, J. and Bu, L. C., Modelling primary and secondary drug resistance under China’s “Four-free-care policy”, Int. J. Biomath.5 (2012) 1250032. · Zbl 1291.92083
[6] E. J. Fu and W. D. Wang, Study of epidemic model with drug resistance and seasonality, Master’s thesis, Southwestern University (2014).
[7] Gao, Y. S. and Bai, M. H. B., Qualitative analysis of a antibiotic-resistant bacteria model with different respond function, J. Xinjiang Univ. (Nat. Sci. Edn.)32 (2015) 170-176. · Zbl 1340.34165
[8] Carla Pinto, M. A. and Carvalho, A. R. M., The HIV/TB coinfection severity in the presence of TB multi-drug resistant strains, Ecol. Complex.32 (2017) 1-20.
[9] Camacho, E. T., Wirkus, S. and Marshall, P. A., Mathematical modeling of fungal infection in immune compromised individuals: Implications for drug treatment, J. Theor. Biol.281 (2011) 9-17. · Zbl 1397.92395
[10] Wirkus, S., Camacho, E. and Marshall, P., Mathematical modeling of fungal infection in immune compromised individuals: The effect of back mutation on drug treatment, J. Theor. Biol.385 (2015) 66-76. · Zbl 1343.92526
[11] Guo, Z. M. and Chen, S. T., A model on coexistence of wild bacteria and antibiotic-resistant bacteria, J. Guangzhou Univ. (Nat. Sci. Edn.)6 (2017) 9-16.
[12] van den Bosch, F. and Gilligan, C. A., Models of fungicide resistance dynamics, Ann. Rev. Phytopathol.46 (2008) 123-147.
[13] Ibargüenmondragón, E., Romeroleiton, J. P., Esteva, L. and Burbanorosero, E. M., Mathematical modeling of bacterial resistance to antibiotics by mutations and plasmid, J. Biol. Syst.24 (2016) 129-146. · Zbl 1343.92484
[14] Vendite, L. L., A mathematical model for fungal population growth and the fungicide resistance problem, J. Biol. Syst.7 (1999) 239-249.
[15] Austin, D. J. and Anderson, R. M., Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models, Philos. Trans. R. Soc. Lond. B, Biol. Sci.354(1384) (1999) 721-738.
[16] Garber, A. M., Antibiotic exposure and resistance in mixed bacterial populations, Theor. Popul. Biol.32 (1987) 326-346. · Zbl 0626.92002
[17] Chen, S. D., Xu, W. J. and Chen, L. S., A White-headed langurs impulsive state feedback control model with sparse effect and continuous delay, Commun. Nonlinear Sci. Numer. Simul.50 (2017) 88-102. · Zbl 1524.34206
[18] Guo, H. J., Chen, L. S. and Song, X. Y., Qualitative analysis of impulsive state feedback control to an algae-fish system with bistable property, Appl. Math. Comput.271 (2015) 905-922. · Zbl 1410.93053
[19] Guo, H. J., Chen, L. S. and Song, X. Y., Geometric properties of solution of a cylindrical dynamic system with impulsive state feedback control, Nonlinear Anal. Hybrid Syst.15 (2015) 98-111. · Zbl 1309.34012
[20] Sun, K. B., Tian, Y., Chen, L. S. and Kasperski, A., Nonlinear modelling of a synchronized chemostat with impulsive state feedback control, Math. Comput. Model.52 (2010) 227-240. · Zbl 1201.92065
[21] Critchley, A. and Karlowsky, J. A., Optimal use of antibiotic resistance surveillance systems, Clin. Microbiol. Infect.10(6) (2004) 502-511.
[22] Thrupp, L. D., Susceptibility testing of antibiotics in liquid media, in Antibiotics in Laboratory Medicine, ed. Lorian, V. (Williams and Wilkins, Baltimore, 1980).
[23] Chen, L. C., Liang, X. Y. and Pei, Y. P., The periodic solutions of the impulsive state feedback dynamical system, Commun. Math. Biol. Neurosci.2018 (2018), Article ID: 14, 21 pp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.