×

Boundary layer study of a nonlinear parabolic equation with a small parameter. (English) Zbl 1529.35017

MSC:

35B25 Singular perturbations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K59 Quasilinear parabolic equations
35K65 Degenerate parabolic equations
76N20 Boundary-layer theory for compressible fluids and gas dynamics
Full Text: DOI

References:

[1] ChhabraRP, RichardsonJF. Non‐Newtonian Flow and Applied Rheology. Oxford: Butterworth‐Heinemann; 2008.
[2] LadyzhenskayaO. New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them. Boundary Value Problems of Mathematical Physics V. Providence, RI: Amer. Math. Soc.; 1970:95‐118.
[3] MatsumuraA, YoshidaN. Global asymptotics toward the rarefaction waves for solutions to the Cauchy problem of the scalar conservation law with nonlinear viscosity. Osaka J Math. 2020;57:187‐205. · Zbl 1446.35062
[4] SochiT. Pore‐scale modeling of non‐Newtonian flow in porous media. PhD thesis: Imperial College London; 2007.
[5] FridH, SheulkhinV. Boundary layers for the Navier-Stokes equations of compressible fluids. Comm Math Phys. 1999;208:309‐330. · Zbl 0946.35060
[6] SchlichtingH. Boundary Layer Theory, 7th ed. New York: McGraw‐Hill; 1979. · Zbl 0434.76027
[7] SammartinoM, CaflischR. Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half‐space, I. Existence for Euler and Prandtl equations. Comm Math Phys. 1998;192:433‐461. II. Construction of the Navier‐Stokes solution. Comm. Math. Phys. 1998; 192: 463-491. · Zbl 0913.35102
[8] TemamT, WangX. Boundary layers associated with incompressible Navier-Stokes equations: The noncharacteristic boundary case. J Differ Equ. 2002;179:647‐686. · Zbl 0997.35042
[9] XinZ, YanagisawaT. Zero‐viscosity limit of the linearized Navier-Stokes equations for a compressible viscous UID in the half‐plane. Comm Pure Appl Math. 1999;52:479‐541. · Zbl 0922.35116
[10] JiangS, ZhangJ. Boundary layers for the Navier-Stokes equations of compressible heat‐conducting flows with cylindrical symmetry. SIAM J Math Anal. 2009;41:237‐268. · Zbl 1303.76117
[11] YaoL, ZhangT, ZhuC. Boundary layers for compressible Navier-Stokes equations with density‐dependent viscosity and cylindrical symmetry. Ann Inst Henri Poincaré, Anal Non Lineairé. 2007;28:677‐709. · Zbl 1401.76118
[12] LiuC, XieF, YangT. MHD boundary layers in Sobolev spaces without monotonicity. I Well‐posedness theory Comm Pure Appl Math. 2019;72:63‐121. · Zbl 1404.35492
[13] QinX, YangT, YaoZ, ZhouW. Vanishing shear viscosity limit and boundary layer study for the planar MHD system. Math Models Methods Appl Sci. 2019;29(6):1139‐1174. · Zbl 1425.35162
[14] WangS, WangB, LiuC, WangN. Boundary layer problem and zero viscosity‐diffusion limit of the incompressible magnetohydrodynamic system with no‐slip boundary conditions. J Differential Equations. 2017;263(8):4723‐4749. · Zbl 1375.35335
[15] HamoudaM, JungCY, TemamT. Boundary layers for the 2D linearized primitive equations. Comm Pure Appl Anal. 2009;8(1):335‐359. · Zbl 1152.35423
[16] HamoudaM, JungCY, TemamT. Boundary layers for the 3D primitive equations in a cube: The supercritical modes. Nonlinear Anal. 2016;132:288‐317. · Zbl 1382.35306
[17] HamoudaM, JungCY, TemamT. Asymptotic analysis for the 3D primitive equations in a channel. Discrete Contin Dyn Syst Ser S. 2013;6(2):401‐422. · Zbl 1262.35078
[18] HamoudaM, HanD, JungCY, TawriK, TemamR. Boundary layers for the subcritical modes of the 3D primitive equations in a cube. J Differential Equations. 2019;267(1):61‐96. · Zbl 1483.35162
[19] ZhouW, QinX, WeiX, ZhaoX. Boundary layer study for an ocean related system with a small viscosity parameter. Appl Math Lett. 2019;96:108‐114. · Zbl 1426.35021
[20] PengY. Boundary layer and vanishing diffusion limit for nonlinear evolution equations. Acta Math Sci. 2014;34B(4):1271‐1286. · Zbl 1324.35068
[21] PengH, RuanL, XiangJ. A note on boundary layer of a nonlinear evolution system with damping and diffusions. J Math Anal Appl. 2015;426:1099‐1129. · Zbl 1311.35012
[22] RuanL, ZhuC. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete Contin Dyn Syst. 2012;32(1):331‐352. · Zbl 1235.35151
[23] FridH, ShelukhinV. Boundary layers in parabolic perturbations of scalar conservation laws. Z Angew Math Phys. 2004;55:420‐434. · Zbl 1065.35032
[24] GrenierE, GuèsO. Boundary layers for viscous perturbations of noncharacteristic quasi‐linear hyperbolic problems. J Differ Equ. 1998;143:110��146. · Zbl 0896.35078
[25] GrenierE, RoussetR. Stability of one‐dimensional boundary layers by using Green’s functions. Commun Pure Appl Math. 2001;54(11):1343‐1385. · Zbl 1026.35015
[26] LadyzhenskajaO, SolonnikovV, Ural’tzevaN. Linear and Quasilinear Equations of Parabolic Type, Vol. 23. Providence RI: AMS; 1968. Transl. Math. Mono. · Zbl 0174.15403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.