×

A class of third order quasilinear partial differential equations describing spherical or pseudospherical surfaces. (English) Zbl 1531.35137

Summary: Third order equations, which describe spherical surfaces (ss) or pseudospherical surfaces (pss), of the form \[ \nu z_t - \lambda z_{x x t} = A(z, z_x, z_{x x}) z_{x x x} + B(z, z_x, z_{x x}), \] with \(\nu, \lambda \in \mathbb{R}\), \(\nu^2 + \lambda^2 \neq 0\) and \(A^2 + B^2 \neq 0\), are considered. These equations are equivalent to the structure equations of a metric with Gaussian curvature \(K = 1\) or \(K = - 1\), respectively. Alternatively they can be seen as the compatibility condition of an associated \(\mathfrak{su}(2)\)-valued or \(\mathfrak{sl}(2, \mathbb{R})\)-valued linear problem, also referred to as a zero curvature representation. Under certain assumptions we obtain an explicit classification for equations of the considered form that describe ss or pss, in terms of some arbitrary differentiable functions. Several examples of such equations, which describe also a number of already known equations, are provided by suitably choosing the arbitrary functions. In particular, the problem of determining sequences of conservation laws, either in the ss or pss case, is discussed and illustrated by some examples.

MSC:

35G20 Nonlinear higher-order PDEs
35Q51 Soliton equations
47J35 Nonlinear evolution equations
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53B20 Local Riemannian geometry

References:

[1] Ablowitz, M. J.; Kaup, D. J.; Newell, A.; Segur, H., The inverse scattering transform Fourier analysis for non-linear problems. Stud. Appl. Math., 249-315 (1974) · Zbl 0408.35068
[2] Beals, R.; Coifman, R., Scattering and inverse scattering for first order systems. Commun. Pure Appl. Math., 39-90 (1984) · Zbl 0514.34021
[3] Beals, R.; Coifman, R., Scattering and inverse scattering for first order systems, II. Inverse Probl., 577-593 (1987) · Zbl 0663.35054
[4] Beals, R.; Rabelo, M.; Tenenblat, K., Bäcklund transformations and inverse scattering for some pseudo-spherical surface equations. Stud. Appl. Math., 125-151 (1989) · Zbl 0697.58059
[5] Beals, R.; Tenenblat, K., An intrinsic generalization for the wave and sine-Gordon equations, 25-46 · Zbl 0722.53014
[6] Bour, E., Théorie de la déformation des surfaces. J. Écol. Imper. Polytech., 39, 1-48 (1862)
[7] Calogero, F., A solvable nonlinear wave equation. Stud. Appl. Math., 189-199 (1984) · Zbl 0551.35056
[8] Campos, P. T.; Tenenblat, K., Bäcklund transformations for a class of systems of differential equations. Geom. Funct. Anal., 270-287 (1994) · Zbl 0805.35112
[9] Castro Silva, T.; Tenenblat, K., Third order differential equations describing pseudospherical surfaces. J. Differ. Equ., 4897-4923 (2015) · Zbl 1326.35081
[10] Castro Silva, T.; Kamran, N., Third order differential equations and local isometric immersions of pseudospherical surfaces. Commun. Contemp. Math., 6 (2016) · Zbl 1378.53015
[11] Catalano Ferraioli, D.; Tenenblat, K., Fourth order evolution equations which describe pseudospherical surfaces. J. Differ. Equ., 301-321 (2014)
[12] Catalano Ferraioli, D.; de Oliveira Silva, L. A., Second order evolution equations which describe pseudospherical surfaces. J. Differ. Equ., 8072-8108 (2016) · Zbl 1337.35024
[13] Catalano Ferraioli, D.; de Oliveira, L. A., Local isometric immersions of pseudospherical surfaces described by evolution equations in conservation law form. J. Math. Anal. Appl., 1606-1631 (2017) · Zbl 1369.53007
[14] Catalano Ferraioli, D.; Castro Silva, T.; Tenenblat, K., A class of quasilinear second order partial differential equations which describe spherical or pseudospherical surfaces. J. Differ. Equ., 7164-7182 (2019) · Zbl 1436.53009
[15] Catalano Ferraioli, D.; Castro Silva, T.; Tenenblat, K., Isometric immersions and differential equations describing pseudospherical surfaces. J. Math. Anal. Appl. (2022) · Zbl 1508.35117
[16] Cavalcante, J.; Tenenblat, K., Conservation laws for nonlinear evolution equations. J. Math. Phys., 1044-1049 (1988) · Zbl 0695.35038
[17] Chern, S. S.; Tenenblat, K., Foliations on a surface of constant curvature and the modified Korteweg-de Vries equations. J. Differ. Geom., 347-349 (1981) · Zbl 0483.53019
[18] Chern, S. S.; Tenenblat, K., Pseudospherical surfaces and evolution equations. Stud. Appl. Math., 55-83 (1986) · Zbl 0605.35080
[19] Crampin, M.; Pirani, F. A.E.; Robinson, D. C., The soliton connection. Lett. Math. Phys., 15-19 (1977) · Zbl 0363.35032
[20] Ding, Q.; Tenenblat, K., On differential systems describing surfaces of constant curvature. J. Differ. Equ., 185-214 (2002) · Zbl 1022.58005
[21] Dodd, R. K.; Bullough, R. K., Bäcklund transformations for the sine-Gordon equations. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 1667, 499-523 (1976) · Zbl 0353.35063
[22] Dubrov, B. M.; Komrakov, B. P., The constructive equivalence problem in differential geometry. Mat. Sb.. Sb. Math., 5-6, 655-681 (2000), (Russian); translation in
[23] Dullin, H. R.; Gottwald, G.; Holm, D. D., An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett. (2001)
[24] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett., 1095-1097 (1967) · Zbl 1103.35360
[25] Gomes Neto, V. P., Fifth-order evolution equations describing pseudospherical surfaces. J. Differ. Equ., 2822-2865 (2010) · Zbl 1204.35072
[26] Jorge, L. P.; Tenenblat, K., Linear problems associated to evolution equations of type \(u_{t t} = F(u, u_x, u_{x x}, u_t)\). Stud. Appl. Math., 103-117 (1987)
[27] Kamran, N.; Tenenblat, K., On differential equations describing pseudo-spherical surfaces. J. Differ. Equ., 75-98 (1995) · Zbl 0815.35036
[28] Kelmer, F.; Tenenblat, K., On a class of systems of hyperbolic equations describing pseudo-spherical or spherical surfaces. J. Differ. Equ., 372-394 (2022) · Zbl 1500.35206
[29] Kraenkel, R. A., An integrable evolution equation for surface waves in deep water. J. Phys. A, Math. Theor. (2014) · Zbl 1292.76015
[30] Krasil’schik, I. S.; Vinogradov, A. M., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics (1999), A.M.S. · Zbl 0911.00032
[31] Marvan, M., On the horizontal gauge cohomology and non-removability of the spectral parameter. Acta Appl. Math., 51-65 (2002) · Zbl 1192.58012
[32] Rabelo, M. L., On equations which describe pseudospherical surfaces. Stud. Appl. Math., 221-248 (1989) · Zbl 0696.35111
[33] Rabelo, M. L.; Tenenblat, K., On equations of type \(u_{x t} = F(u, u_x)\) which describe pseudospherical surfaces. J. Math. Phys., 1400-1407 (1990) · Zbl 0711.35085
[34] Rabelo, M. L.; Tenenblat, K., A classification of pseudo-spherical surface equations of type \(u_t = u_{x x x} + G(u, u_x, u_{x x})\). J. Math. Phys., 537-549 (1992) · Zbl 0755.35121
[35] Rasin, A. G.; Schiff, J., Bäcklund transformations for the Camassa-Holm equation. J. Nonlinear Sci., 45-69 (2017) · Zbl 1365.37054
[36] Reyes, E. G., Geometric integrability of the Camassa-Holm equation. Lett. Math. Phys., 117-131 (2002) · Zbl 0997.35081
[37] Reyes, E. G., Nonlocal symmetries and the Kaup-Kupershmidt equation. J. Math. Phys., 7 (2005) · Zbl 1110.37052
[38] Reyes, E. G., Pseudo-potentials, nonlocal symmetries, and integrability of some shallow water equations. Sel. Math. New Ser., 241-270 (2006) · Zbl 1117.35072
[39] Reyes, E. G., Correspondence theorems for hierarchies of equations of pseudo-spherical type. J. Differ. Equ., 26-56 (2006) · Zbl 1094.37041
[40] Reyes, E. G., Equations of pseudo-spherical type (after S. S. Chern and K. Tenenblat). Results Math., 53-101 (2011) · Zbl 1253.53006
[41] Sakovich, S., On integrability of the vector short pulse equation. J. Phys. Soc. Jpn. (2008)
[42] Sasaki, R., Soliton equations and pseudospherical surfaces. Nucl. Phys. B, 343-357 (1979)
[43] Schafer, T.; Wayne, C. E., Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D, 90-105 (2004) · Zbl 1054.81554
[44] Sharpe, R. W., Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. GTM (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0876.53001
[45] Tenenblat, K., Bäcklund theorem for submanifolds of space forms and a generalized wave equation. Bull. Braz. Math. Soc., 69-94 (1985)
[46] Tzitzéica, M. G., Sur une nouvelle classe de surfaces. Rend. Circ. Mat. Palermo, 180-187 (1908) · JFM 39.0685.05
[47] Wazwaz, A-M., The tanh method: solitons and periodic solutions for the Dodd-Bullough-Mikhailov and the Tzitzéica-Dodd-Bullough equations. Chaos Solitons Fractals, 55-63 (2005) · Zbl 1070.35076
[48] Wu, L.; Geng, X.; Zhang, J., Algebro-geometric solution to the Bullough-Dodd-Zhiber-Shabat equation. Int. Math. Res. Not., 8, 2141-2167 (2015) · Zbl 1315.35184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.