×

Quasiperiodic solutions of an extended MKdV hierarchy. (English. Russian original) Zbl 1515.37070

Theor. Math. Phys. 211, No. 1, 498-513 (2022); translation from Teor. Mat. Fiz. 211, No. 1, 65-83 (2022).
Summary: An extended MKdV hierarchy associated with a \(3\times3\) matrix spectral problem is derived by resorting to the Lenard recursion series and zero-curvature equation. The three-sheeted Riemann surface \(\mathcal K_{m-1}\) for the extended MKdV hierarchy is defined by the zeros of the characteristic polynomial of the Lax matrix together with two points at infinity. On \(\mathcal K_{m-1}\), we introduce the Baker-Akhiezer function and a meromorphic function, and then obtain their explicit representations in terms of the Riemann theta function with the aid of algebraic geometry tools. The asymptotic expansions of the meromorphic function give rise to quasiperiodic solutions for the entire extended MKdV hierarchy.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] Its, A. R.; Matveev, V. B., Schrödinger operators with finite-gap spectrum and \(N\)-soliton solutions of the Korteweg-de Vries equation, Theoret. and Math. Phys., 23, 343-355 (1975) · doi:10.1007/BF01038218
[2] Dubrovin, B. A.; Novikov, S. P., Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation, Sov. Phys. JETP, 40, 1058-1063 (1975)
[3] Lax, P. D., Periodic solutions of the KdV equation, Commun. Pure Appl. Math., 28, 141-188 (1975) · Zbl 0295.35004 · doi:10.1002/cpa.3160280105
[4] Krichever, I. M., Algebraic-geometric construction of the Zaharov-Shabat equations and their periodic solutions, Dokl. Akad. Nauk SSSR, 227, 394-397 (1976) · Zbl 0361.35007
[5] Date, E.; Tanaka, S., Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice, Progr. Theoret. Phys. Suppl., 59, 107-125 (1976) · doi:10.1143/PTPS.59.107
[6] Ma, Y.-C.; Ablowitz, M. J., The periodic cubic Schrödinger equation, Stud. Appl. Math., 65, 113-158 (1981) · Zbl 0493.35032 · doi:10.1002/sapm1981652113
[7] Smirnov, A. O., Real finite-gap regular solutions of the Kaup-Boussinesq equation, Theoret. and Math. Phys., 66, 19-31 (1986) · Zbl 0621.35091 · doi:10.1007/BF01028935
[8] Miller, P. D.; Ercolani, N. M.; Krichever, I. M.; Levermore, C. D., Finite genus solutions to the Ablowitz-Ladik equations, Commun. Pure Appl. Math., 48, 1369-1440 (1995) · Zbl 0869.34065 · doi:10.1002/cpa.3160481203
[9] Belokolos, E. D.; Bobenko, A. I.; Enol’skij, V. Z.; Its, A. R.; Matveev, V. B., Algebro-Geometric Approach to Nonlinear Integrable Equations (1994), Berlin: Springer, Berlin · Zbl 0809.35001
[10] Alber, M. S.; Fedorov, Yu. N., Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians, Inverse Problems, 17, 1017-1042 (2001) · Zbl 0988.35139 · doi:10.1088/0266-5611/17/4/329
[11] Cao, C.; Wu, Y.; Geng, X., Relation between the Kadomtsev-Petviashvili equation and the confocal involutive system, J. Math. Phys., 40, 3948-3970 (1999) · Zbl 0947.35138 · doi:10.1063/1.532936
[12] Geng, X.; Cao, C., Decomposition of the \((2+1)\)-dimensional Gardner equation and its quasi-periodic solutions, Nonlinearity, 14, 1433-1452 (2001) · Zbl 1160.37405 · doi:10.1088/0951-7715/14/6/302
[13] Qiao, Z., Generalized \(r\)-matrix structure and algebro-geometric solution for integrable systems, Rev. Math. Phys., 13, 545-586 (2001) · Zbl 1025.37034 · doi:10.1142/S0129055X01000752
[14] Gesztesy, F.; Holden, H., Soliton Equations and Their Algebro-Geometric Solutions (2003), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1061.37056 · doi:10.1017/CBO9780511546723
[15] Gesztesy, F.; Holden, H.; Michor, J.; Teschl, G., Soliton Equations and Their Algebro-Geometric Solutions (2008), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1151.37056 · doi:10.1017/CBO9780511543203
[16] Cao, C.; Xu, X., A finite genus solution of the H1 model, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1234.35216 · doi:10.1088/1751-8113/45/5/055213
[17] Dickson, R.; Gesztesy, F.; Unterkofler, K., A new approach to the Boussinesq hierarchy, Math. Nachr., 198, 51-108 (1999) · Zbl 0978.35049 · doi:10.1002/mana.19991980105
[18] Dickson, R.; Gesztesy, F.; Unterkofler, K., Algebro-geometric solutions of the Boussinesq hierarchy, Rev. Math. Phys., 11, 823-879 (1999) · Zbl 0971.35065 · doi:10.1142/S0129055X9900026X
[19] Geng, X.; Wu, L.; He, G., Quasi-periodic solutions of the Kaup-Kupershmidt hierarchy, J. Nonlinear Sci., 23, 527-555 (2013) · Zbl 1309.37070 · doi:10.1007/s00332-012-9160-3
[20] He, G.; Geng, X.; Wu, L., Algebro-geometric quasi-periodic solutions to the three-wave resonant interaction hierarchy, SIAM J. Math. Anal., 46, 1348-1384 (2014) · Zbl 1319.35211 · doi:10.1137/130918794
[21] Wu, L.; Geng, X.; Zang, J., Algebro-geometric solution to the Bullough- Dodd- Zhiber- Shabat equation, Int. Math. Res. Not., 2015, 2141-2167 (2015) · Zbl 1315.35184
[22] Oevel, W.; Strampp, W., Constrained KP hierarchy and bi-Hamiltonian structures, Commun. Math. Phys., 157, 51-81 (1993) · Zbl 0793.35095 · doi:10.1007/BF02098018
[23] Geng, G.; Du, D., Two hierarchies of new nonlinear evolution equations associated with \(3\times3\) matrix spectral problems, Chaos Solitons Fractals, 29, 1165-1172 (2006) · Zbl 1142.37358 · doi:10.1016/j.chaos.2005.08.086
[24] Farkas, H. M.; Kra, I., Riemann Surfaces (1980), New York: Springer, New York · Zbl 0475.30001 · doi:10.1007/978-1-4684-9930-8
[25] Mumford, D., Tata Lectures on Theta II (1984), Boston: Birkhäuser, Boston · Zbl 0549.14014
[26] Griffiths, P.; Harris, J., Principles of Algebraic Geometry (1994), New York: Wiley, New York · Zbl 0836.14001 · doi:10.1002/9781118032527
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.