×

Multidimensional matrix characterization of asymptotic \(\mathcal{I}_2\)-equivalent and ideal for double sequences. (English) Zbl 1428.40003

Summary: The goal of this article is to study \( \mathcal{I} \)-equivalence double nonnegative sequences. To accomplish this we present a series of theorems that are similar to the following: If \( A \) is a nonnegative four dimensional summability matrix that maps bounded double sequences to \( \ell^2 \) and let \( \mathcal{I}_2 \) and \( \mathcal{J}_2 \) be admissible ideals in \( \mathbb{N}\times\mathbb{N}\) then the following are equivalent.
1.
If \(x=(x_{k,l})\) and \(y=(y_{k,l})\) are bounded double sequences such that \(x \mathop{\sim}\limits^{\mathcal{I}_2} y \), \( (x_{k,l})\in P''_0 \) and \((y_{k,l})\in P''_\delta \), for some \( \delta >0 \), then \( R_{m,n} (Ax) \mathop{\sim}\limits^{\mathcal{J}_2} R_{m,n} (Ay) \) for each \( m \) and \( n \),
2.
\( \mathcal{J}_2$-$\lim_{m,n} \frac{\sum_{k,l\geq m,n} \sum_{p,q\in S_2}a_{k,l,p,q}}{\sum_{k,l\geq m,n} \sum^{\infty,\infty}_{p,q=1,1} a_{k,l,p,q}}=0 \) for each \( S_2\in\mathcal{I}_2 \).

In addition other variations and implications are also presented.

MSC:

40A35 Ideal and statistical convergence
40B05 Multiple sequences and series
Full Text: DOI

References:

[1] Pobyvancts, I. P., Asymptotic equivalence of some linear transformation defined a nonnegative matrix and reduced to generalized equivalence in the sense of Cesaro and Abel, Matematicheskaya Fizika, 28, 83-87 (1980) · Zbl 0447.40005
[2] Fridy, J. A., Minimal rates of summability, Can. J. Math, 30, 4, 808-816 (1978) · Zbl 0359.40003 · doi:10.4153/CJM-1978-069-7
[3] Marouf, M. S., Asymptotic equivalence and summability, Int. J. Math. Math. Sci, 16, 4, 755-762 (1993) · Zbl 0788.40001 · doi:10.1155/S0161171293000948
[4] Patterson, R. F., On asymptotically statistically equivalent sequences, Demonstr. Math, 36, 1, 149-153 (2003) · Zbl 1045.40003
[5] Gumus, H.; Connor, J.; Nuray, F., Asymptotic \(####\) Equivalence of two number sequences and asymptotic \(####\) Regular matrices, Chin. J. Math · Zbl 1317.40002 · doi:10.1155/2014/805857
[6] Fridy, J. A., On statistical convergence, Analysis, 5, 301-313 (1985) · Zbl 0588.40001
[7] Patterson, R. F., Rates of convergence for double sequences, Sea. Bull. Math, 26, 3, 469-478 (2003) · Zbl 1024.40002 · doi:10.1007/s10012-002-0469-y
[8] Kostyrko, P.; Mácaj, M.; Šalát, T.
[9] Kostyrko, P.; Šalát, T.; Wilezyński, W., \(####\) converge, Real Anal. Exchange, 26, 2, 669-686 (2000)
[10] Mursaleen, M.; Mohiuddine, S. A., On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62, 1, 49-62 (2012) · Zbl 1274.40034
[11] Savas, E., On generalized statistically convergent functions via ideals, Appl. Math. Inf. Sci, 10, 3, 943-947 (2016) · doi:10.18576/amis/100312
[12] Savas, E.; Das, P., A generalized statistical convergence via ideals, Appl. Math. Lett, 24, 6, 826-830 (2011) · Zbl 1220.40004 · doi:10.1016/j.aml.2010.12.022
[13] Das, P.; Kostyrko, P.; Wilezyński, W.; Malik, P., \(####\) and \(####\) convergence of double sequences, Math. Slovaca, 58, 605-620 (2008) · Zbl 1199.40026
[14] Mohiuddine, S. A.; Alotaibi, A.; Alsulami, S. M., Ideal convergence of double sequences in random 2-normed spaces, Adv. Diff. Equ, 2012, 1, 149 (2012) · Zbl 1346.40001 · doi:10.1186/1687-1847-2012-149
[15] Mursaleen, M.; Mohiuddine, S. A., On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12, 62, 359-371 (2010) · Zbl 1240.40032
[16] Pringsheim, A., Zur theorie der zweifach unendlichen zahlen folgen, Math. Ann, 53, 3, 289-321 (1900) · JFM 31.0249.01 · doi:10.1007/BF01448977
[17] Hamilton, H. J., Transformations of multiple sequences, Duke Math. J, 2, 1, 29-60 (1936) · Zbl 0013.30301 · doi:10.1215/S0012-7094-36-00204-1
[18] Patterson, R. F., Double sequence core theorems, Int. J. Math. Math. Sci, 22, 4, 785-793 (1999) · Zbl 0949.40007 · doi:10.1155/S0161171299227858
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.