×

Generalizations of the Klein-Gordon and the Dirac equations from non-standard Lagrangians. (English) Zbl 1330.35364

Summary: We present various generalizations of the Klein-Gordon and Dirac formalisms based on non-standard Lagrangians within the framework of the calculus of variations characterized by a power-law Lagrangian \(\mathsf{L}^{1+\gamma}\), \(\gamma\) being a free parameter. In the case of the bosonic scalar field, the modified dispersion relation has been derived and based on this, it was observed that for a particular choice of non-standard Lagrangians, the new field theory forbid the presence of massless particles. Besides, the Klein-Gordon equation is modified and becomes similar to the Barut equation which is a second order equation in the \((1/2,0)\oplus (0,1/2)\) representation of the Lorentz group, which explains the splitting of leptons. For the case of the spinor scalar field, the Barut-like equation was derived from a non-standard Lagrangian as well. For some specific class of non-standard Lagrangians, the modified dispersion is modified and prohibits the presence of massless particles.

MSC:

35Q41 Time-dependent Schrödinger equations and Dirac equations
35Q53 KdV equations (Korteweg-de Vries equations)
35Q40 PDEs in connection with quantum mechanics
Full Text: DOI

References:

[1] El-Nabulsi RA (2012) Non-linear dynamics with non-standard Lagrangians Qual. Theory Dyn. Syst. doi: 10.1007/s12346-012-0074-0
[2] El-Nabulsi RA (2012) Quantum field theory from and exponential action functional. Indian J Phys 87:379–383
[3] Alekseev AI, Arbuzov BA (1984) Classical theory of Yang-Mills field for nonstandard. Lagrangians Theor Math Phys 59:372–378 · doi:10.1007/BF01028515
[4] Musielak ZE (2008) Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J Phys A: Math Theor 41:055205–055223 · Zbl 1136.37044 · doi:10.1088/1751-8113/41/5/055205
[5] Musielak ZE (2009) General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos, Solitons Fractals 42:2645–2652 · Zbl 1198.34057 · doi:10.1016/j.chaos.2009.03.171
[6] Chandrasekar VK, Pandey SN, Senthilvelan M, Lakshmanan M (2006) Simple and unified approach to identify integrable nonlinear oscillators and systems. J Math Phys 47:023508–023554 · Zbl 1111.34003 · doi:10.1063/1.2171520
[7] Chandrasekar VK, Senthilvelan M, Lakshmanan M (2005) On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator. Phys Rev E72:066203–066222
[8] Carinena JF, Ranada MF, Santander M (2005) Lagrangian formalism for nonlinear second order Riccati Systems: one-dimensional integrability and two-dimensional superintegrability. J Math Phys 46:062703–062728 · Zbl 1110.37051 · doi:10.1063/1.1920287
[9] Renaux-Petel S, Tasinato G (2009) Nonlinear perturbations of cosmological scalar fields with non-standard kinetic terms. J Cosmo Astropart Phys 0901:012–033
[10] Bender CM, Holm DC, Hook DW (2007) Complex trajectories of a simple pendulum. J Phys A: Math Gen 40:F81–F89 · Zbl 1112.70020 · doi:10.1088/1751-8113/40/3/F01
[11] Barut AO, Cordero P, Ghirardi GC (1970) A unified treatment of leptons. Nuovo Cim A66:36–46 · doi:10.1007/BF02819041
[12] Barut AO (1978) The mass of the muon. Phys Lett B73:310–312 · Zbl 0419.53019 · doi:10.1016/0370-2693(78)90522-1
[13] Barut AO (1979) Lepton mass formula Phys. Rev. Lett. 42:1251–1255; (1979) Erratum-ibid. 43:1057–1059
[14] Dvoeglazov VV (2008) The Barut second-order equation: lagrangian, dynamical invariants and interactions. Adv Appl Clifford Algebra 18:579–585 · Zbl 1181.81039 · doi:10.1007/s00006-008-0092-9
[15] Kruglov SI (2004) On the generalized Dirac equation for fermions with two mass states, Annales Fond Broglie 29:1005–1016
[16] Kruglov SI (2006) On the Hamiltonian form of generalized Dirac equation for fermions with two mass states. Elec J Theor Phys 10:11–16 · Zbl 1135.81331
[17] Sprenger M, Nicolini P, Bleicher M (2012) Physics on smallest scales-an Introduction to minimal length phenomenology. Eur J Phys 33:853–862 · Zbl 1271.83034 · doi:10.1088/0143-0807/33/4/853
[18] Weinberg S (1996) The quantum theory of fields Vol. I and II. Cambridge University Press, Cambridge · Zbl 0959.81002
[19] Bogoslovsky G, Goenner H (2004) Generalized Lorentz symmetry and nonlinear spinor fields in a flat Finslerian space-time. Proc Inst Math NAS Ukraine 50:637–644 · Zbl 1092.81035
[20] Nozari K, Karami M (2005) Minimal length and generalized Dirac equation. Mod Phys Lett A20:3095–3104 · Zbl 1082.83509 · doi:10.1142/S0217732305018517
[21] Nozari K, Mehdipour SH (2007) Implications of minimal length scale on the statistical mechanics of ideal gas. Chaos Solitons Fractals 32:1637–1644 · doi:10.1016/j.chaos.2006.09.019
[22] Niederle J, Nikitin AG (2001) Relativistic wave equations for interacting, massive particles with arbitrary half-integer spins. Phys Rev D64:125013–125024
[23] Niederle J, Nikitin AG (1997) Involutive symmetries, supersymmetries and reductions of the Dirac equation. J Phys A30:999–1010 · Zbl 0991.81035
[24] Niederle J, Nikitin AG (1997) Non-Lie and discrete symmetries of the Dirac equation. J Nonlin Math Phys 4:436–444 · Zbl 0991.81037 · doi:10.2991/jnmp.1997.4.3-4.19
[25] de Montigny M, Khanna FC, Santana AE, Santos ES, Vianna JDM (2000) Galilean covariance and the Duffin–Kemmer–Petiau equation. J Phys A: Math Gen 33:L273–L278 · Zbl 1004.81020 · doi:10.1088/0305-4470/33/31/102
[26] de Montigny M, Khanna FC, Santana AE, Santos ES (2001) Galilean covariance and non-relativistic Bhabha equations. J Phys A: Math Gen 34:8901–8917 · Zbl 1045.81022 · doi:10.1088/0305-4470/34/42/313
[27] Huegele R, Musielak ZE, Fry JL (2012) Fundamental dynamical equations for spinor wave functions: i. Lévy-Leblond and Schrödinger equations. J Phys A: Math Theor 45:143222–145205 · Zbl 1244.81031 · doi:10.1088/1751-8113/45/14/145205
[28] Kaplan DB, Sun S (2012) Spacetime as a topological insulator: mechanism for the origin of the fermion generations. Phys. Rev. Letts. 108:181807–181811 · doi:10.1103/PhysRevLett.108.181807
[29] Kostelecky VA, Samuel S (1989) Spontaneous Breaking of Lorentz Symmetry in String Theory. Phys Rev D39:683–685
[30] Kostelecky VA, Potting R (1991) CPT and strings. Nucl Phys B359:545–570 · doi:10.1016/0550-3213(91)90071-5
[31] Kruglov SI (2012) Modified Dirac equation with Lorentz invariance violation and its solution for particles in an external magnetic field. Phys. Lett. B718:228–231 · doi:10.1016/j.physletb.2012.10.037
[32] Chang Z, Wang S (2012) Lorentz invariance violation and electromagnetic field in an intrinsically anisotropic spacetime. Eur Phys J C72:2165–2181 · doi:10.1140/epjc/s10052-012-2165-0
[33] Nielsen HB, Picek I (1982) Baryon poles in proton decay amplitudes. Phys Lett B144:141–146 · doi:10.1016/0370-2693(82)90133-2
[34] Nielsen HB, Picek I (1983) The Rédei-Like Model and Testing Lorentz Invariance. Nucl Phys B211:269–296 · doi:10.1016/0550-3213(83)90409-1
[35] Nielsen HB, Picek I (1983) Lorentz Non-Invariance. Phys Rev D27:665–667
[36] Aringazin AK, Jannussis A, Lopez DF, Nishioka M, Veljanoski B (1991) Santilli’s Lie-Isotopic Generalization of Galilei’s and Einstein’s Relativities. Kostarakis Publishers, Athens · Zbl 0760.53041
[37] Nishioka M (1984) Remarks on the Lie-isotopic lifting of gauge theory. Nuovo Cimento A82:351–356 · doi:10.1007/BF02773560
[38] Nishioka M (1985) Remarks on Lie algebras appearing in the Lie-isotopic lifting of gauge theory. Nuovo Cimento A85:331–336 · Zbl 0595.58046 · doi:10.1007/BF02902741
[39] Nishioka M (1986) Applications of the Lie-isotopic lifting of gauge theory to a system of gauge fields and gravitation. Nuovo Cimento A92:132–138 · doi:10.1007/BF02727186
[40] Wio HS, Revelli JA, Deza RR, Escudero C, de la Lama MS (2010) KPZ equation: galilean-invariance violation, Consistency, and fluctuation–dissipation issues in real-space discretization. Europhys Letts 89:40008–40012 · doi:10.1209/0295-5075/89/40008
[41] Kaehler G, Wagner A (2012) Galilean invariance in fluctuating lattice Boltzmann American Physical Society, APS March Meeting, February 27-March 2, abstract #L41.014 · Zbl 1364.76179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.