×

Nonlinear Schrödinger equation with nonzero boundary conditions revisited: Dbar approach. (English) Zbl 1516.35392

Summary: The Dbar dressing method is extended to study the focusing/defocusing nonlinear Schrödinger (NLS) equation with nonzero boundary condition. A special type of complex function is considered. The function is meromorphic outside an annulus with center 0 and satisfies a local Dbar problem inside the annulus. The theory of such function is extended to construct the Lax pair of the NLS equation with nonzero boundary condition. In this procedure, the relation between the NLS potential and the solution of the Dbar problem is established. A certain distribution for the Dbar problem is introduced to obtain the focusing/defocusing NLS equation and the conservation laws.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
35C08 Soliton solutions
35P25 Scattering theory for PDEs
Full Text: DOI

References:

[1] Zakharov, VE; Shabat, AB, Interaction between solitons in a stable medium, Sov. Phys. JETP, 37, 823-828 (1973)
[2] Kawata, T.; Inoue, H., Exact solutions of the derivative nonlinear Schrödinger equation under the nonvanishing conditions, J. Phys. Soc. Jpn., 44, 1968-1976 (1978) · Zbl 1334.35025 · doi:10.1143/JPSJ.44.1968
[3] Kawata, T.; Inoue, H., Inverse scattering method for nonlinear evolution equations under nonvanishing conditions, J. Phys. Soc. Jpn., 44, 1722-1729 (1978) · Zbl 1334.81104 · doi:10.1143/JPSJ.44.1722
[4] Chen, XJ; Lam, WK, Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions, Phys. Rev. E, 69 (2004) · doi:10.1103/PhysRevE.69.066604
[5] Prinari, B.; Ablowitz, MJ; Biondini, G., Inverse scattering transform for vector nonlinear Schrödinger equation with non-vanishing boundary conditions, J. Math. Phys., 47 (2006) · Zbl 1112.37070 · doi:10.1063/1.2209169
[6] Ablowitz, MJ; Biondini, G.; Prinari, B., Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions, Inverse Probl., 23, 1711-1758 (2007) · Zbl 1127.35059 · doi:10.1088/0266-5611/23/4/021
[7] Prinari, B.; Biondini, G.; Trubatch, AD, Inverse scattering transform for the multi-component nonlinear Schrödinger equation with nonzero boundary conditions, Stud. Appl. Math., 126, 245-302 (2010) · Zbl 1218.35251 · doi:10.1111/j.1467-9590.2010.00504.x
[8] Demontis, F.; Prinari, B.; van der Mee, C.; Vitale, F., The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions, Stud. Appl. Math., 131, 1-40 (2013) · Zbl 1311.35277 · doi:10.1111/j.1467-9590.2012.00572.x
[9] Biondini, G.; Kovačić, G., Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 55 (2014) · Zbl 1298.35187 · doi:10.1063/1.4868483
[10] Demontis, F.; Prinari, B.; van der Mee, C.; Vitale, F., The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary condition, J. Math. Phys., 55 (2014) · Zbl 1366.35165 · doi:10.1063/1.4898768
[11] Biondini, G.; Prinari, B., On the spectrum of the Dirac operator and the existence of discrete eigenvalues for the defocusing nonlinear Schrödinger equation, Stud. Appl. Math., 132, 138-159 (2014) · Zbl 1291.35335 · doi:10.1111/sapm.12024
[12] Kraus, D.; Biondini, GKG, The focusing Manakov system with nonzero boundary conditions, Nonlinearity, 28, 3101-3151 (2015) · Zbl 1330.35406 · doi:10.1088/0951-7715/28/9/3101
[13] Prinari, B.; Vitale, F.; Biondini, G., Dark-bright soliton solutions with nontrivial polarization interactions for the three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 56 (2015) · Zbl 1321.35212 · doi:10.1063/1.4926439
[14] Prinari, B.; Vitale, F., Inverse scattering transform for the focusing nonlinear Schrödinger equation with one-sided nonzero boundary condition, Contemp. Math., 651, 157-194 (2015) · Zbl 1346.35188 · doi:10.1090/conm/651/13035
[15] van der Mee, C., Inverse scattering transform for the discrete focusing nonlinear Schrödinger equation with nonvanishing boundary conditions, J. Nonlinear Math. Phys., 22, 233-264 (2015) · Zbl 1420.37101
[16] Biondini, G.; Kraus, D., Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions, SIAM J. Math. Anal., 47, 706-757 (2015) · Zbl 1339.35282 · doi:10.1137/130943479
[17] Biondini, G.; Fagerstrom, E.; Prinari, B., Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions, Physica D, 333, 117-136 (2016) · Zbl 1415.35217 · doi:10.1016/j.physd.2016.04.003
[18] Biondini, G.; Kraus, DK; Prinari, B., The three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions, Commun. Math. Phys., 348, 475-533 (2016) · Zbl 1365.35148 · doi:10.1007/s00220-016-2626-7
[19] Pichler, M.; Biondini, G., On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles, IMA J. Appl. Math., 82, 131-151 (2017) · Zbl 1406.35368 · doi:10.1093/imamat/hxw009
[20] Ablowitz, MJ; Luo, XD; Musslimani, ZH, Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys., 59 (2018) · Zbl 1383.35204 · doi:10.1063/1.5018294
[21] Prinari, B.; Demontis, F.; Li, ST; Horikis, TP, Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions, Physica D, 368, 22-49 (2018) · Zbl 1381.35114 · doi:10.1016/j.physd.2017.12.007
[22] Feng, BF; Luo, XD; Ablowitz, MJ; Musslimani, ZH, General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions, Nonlinearity, 31, 5385-5409 (2018) · Zbl 1406.37049 · doi:10.1088/1361-6544/aae031
[23] Zhu, JY; Wang, LL, Kuznetsov-Ma solution and Akhmediev breather for TD equation, Commun. Nonlinear Sci. Numer. Simul., 67, 555-567 (2019) · Zbl 1508.35167 · doi:10.1016/j.cnsns.2018.07.017
[24] Zhu, JY; Wang, LL; Qiao, ZJ, Inverse spectral transform for the Ragnisco-Tu equation with Heaviside initial condition, J. Math. Anal. Appl., 474, 452-466 (2019) · Zbl 1415.34036 · doi:10.1016/j.jmaa.2019.01.054
[25] Zhu, JY; Wang, XR, Broer-Kaup system revisit: inelastic interaction and blowup solutions, J. Math. Anal. Appl., 496 (2020) · Zbl 1459.35052 · doi:10.1016/j.jmaa.2020.124794
[26] Zhang, G.; Chen, SY; Yan, ZY, Focusing and defocusing Hirota equations with non-zero boundary conditions: inverse scattering transforms and soliton solutions, Commun. Nonlinear Sci. Numer. Simul., 80 (2020) · Zbl 1450.35297 · doi:10.1016/j.cnsns.2019.104927
[27] Zhang, GQ; Yan, ZY, Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions, Physica D, 402 (2020) · Zbl 1453.37069 · doi:10.1016/j.physd.2019.132170
[28] Zhang, ZC; Fan, EG, Inverse scattering transform for the Gerdjikov-Ivanov equation with nonzero boundary conditions, Z. Angew. Math. Phys., 71, 149 (2020) · Zbl 1448.35439 · doi:10.1007/s00033-020-01371-z
[29] Rybalko, Y.; Shepelsky, D., Long-time asymptotics for the integrable nonlocal focusing nonlinear Schrödinger equation for a family of step-kike initial data, Commun. Math. Phys., 382, 87-121 (2021) · Zbl 1462.35367 · doi:10.1007/s00220-021-03941-2
[30] Geng, XG; Wang, KD; Chen, MM, Long-time asymptotics for the spin-1 Gross-Pitaevskii equation, Commun. Math. Phys., 382, 585-611 (2021) · Zbl 1466.35326 · doi:10.1007/s00220-021-03945-y
[31] Biondini, G.; Lottes, J.; Mantzavinos, D., Inverse scatteringtransform for the focusing nonlinear Schrödinger equation with counterpropagating flows, Stud. Appl. Math., 146, 371-439 (2021) · Zbl 1472.35347 · doi:10.1111/sapm.12347
[32] Jaulent, M.; Manna, M., The spatial transform method: partmacr derivation of the AKNS hierarchy, Phys. Lett. A, 117, 62-66 (1987) · doi:10.1016/0375-9601(86)90160-X
[33] Jaulent, M.; Manna, M., Connection between the KDV and the AKNS spatial transforms, Inverse Probl., 2, L35-L41 (1986) · Zbl 0621.35006 · doi:10.1088/0266-5611/2/3/002
[34] Jaulent, M.; Manna, M., The spatial transform method for partmacr equations of nth linear order, Inverse Probl., 3, L13-L18 (1987) · Zbl 0619.35096 · doi:10.1088/0266-5611/3/1/004
[35] Jaulent, M.; Manna, M.; Alonso, LM, \( \bar{\partial }\) equations in the theory of integrable systems, Inverse Probl., 4, 123-150 (1988) · Zbl 0697.35138 · doi:10.1088/0266-5611/4/1/012
[36] Zakharov, V.; Manakov, SV, Construction of higher-dimensional nonlinear integrable systems and of their solutions, Funct. Anal. Appl., 19, 89-101 (1985) · Zbl 0597.35115 · doi:10.1007/BF01078388
[37] Beals, R.; Coifman, RR, The D-bar approach to inverse scattering and nonlinear evolutions, Physica D, 18, 242-249 (1986) · Zbl 0619.35090 · doi:10.1016/0167-2789(86)90184-3
[38] Bogdanov, LV; Manakov, SV, The non-local \(\bar{\partial }\) problem and (2+1)-dimensional soliton equations, J. Phys. A: Math. Gen., 21, L537-L544 (1988) · Zbl 0662.35112 · doi:10.1088/0305-4470/21/10/001
[39] Beals, R.; Coifman, RR, Linear spectral problems, non-linear equations and the \(\bar{\partial } \)-method, Inverse Probl., 5, 87-130 (1989) · Zbl 0685.35080 · doi:10.1088/0266-5611/5/2/002
[40] Konopelchenko, BG, Solitons in Multidimensions-Inverse Spectral transform Method (1993), Singapore: Word Scientific, Singapore · Zbl 0836.35002 · doi:10.1142/1982
[41] Dubrovsky, VG; Konopelchenko, BG, The (2+1)-dimensional integrable generalization of the sine-Gordon equation. II. localized solutions, Inverse Probl., 9, 391-416 (1993) · Zbl 0779.35101 · doi:10.1088/0266-5611/9/3/003
[42] Konopelchenko, BG; Dubrovsky, VG, A (2+1)-dimensional integrable generalization of the sine-Gordon equation. i. \( \bar{\partial }-\partial \)-dressing and the initial value problem, Stud. Appl. Math., 90, 189-223 (1993) · Zbl 0795.35106 · doi:10.1002/sapm1993903189
[43] Dubrovsky, VG; Konopelchenko, BG, \( \bar{\partial } \)-dressing and exact solutions for the (2+1)-dimensional Harry Dym equation, J. Phys. A: Math. Gen., 27, 4619-4628 (1994) · Zbl 0842.35103 · doi:10.1088/0305-4470/27/13/035
[44] Dubrovsky, VG, The application of the \(\bar{\partial } \)-dressing method to some integrable (2+1)-dimensional nonlinear equations, J. Phys. A: Math. Gen., 29, 3617-3630 (1996) · Zbl 0896.35128 · doi:10.1088/0305-4470/29/13/027
[45] Dubrovsky, VG, The \(\bar{\partial } \)-dressing method and the solutions with constant asymptotic values at infinity of DS-II equation, J. Math. Phys., 38, 6382-6400 (1997) · Zbl 0898.58028 · doi:10.1063/1.532218
[46] Dubrovsky, VG, The construction of exact multiple pole solutions of some (2+1)-dimensional integrable nonlinear evolution equations via the \(\bar{\partial } \)-dressing method, J. Phys. A: Math. Gen., 32, 369-390 (1999) · Zbl 0948.37048 · doi:10.1088/0305-4470/32/2/011
[47] Dubrovsky, VG; Formusatik, IB, The construction of exact rational solutions with constant asymptotic values at infinity of two-dimensional NVN integrable nonlinear evolution equations via the dbar-dressing method, J. Phys. A: Math. Gen., 34, 1837-1852 (2001) · Zbl 0965.37057 · doi:10.1088/0305-4470/34/9/303
[48] Wang, XR; Zhu, JY; Qiao, ZJ, New solutions to the differential-difference KP equation, Appl. Math. Lett., 113 (2021) · Zbl 1458.35021 · doi:10.1016/j.aml.2020.106836
[49] Doliwa, A.; Manakov, SV; Santini, PM, \( \bar{\partial } \)-reductions of the multidimensional quadrilateral lattice. The multidimensional circular lattice, Commun. Math. Phys., 196, 1-18 (1998) · Zbl 0908.35125 · doi:10.1007/s002200050411
[50] Santini, PM; Mason, L.; Nutku, Y., Transformations and reductions of integrable nonlinear equations and the dbar-problem, Geometry and integrability (2003), Cambridge: Cambridge University Press, Cambridge
[51] Li, Q.; Su, S.; Li, MH; Zhang, JB, The inverse scattering transform for the differential-difference Kadomtsev-Petviashvili equation, J. Math. Phys., 56 (2015) · Zbl 1325.37044 · doi:10.1063/1.4933221
[52] Doktorov, EV; Leble, SB, Solitons, Nonlinear Evolution Equations and Inverse Scattering (2007), Amsterdam: Springer, Amsterdam
[53] Zhu, JY; Geng, XG, A hierarchy of coupled evolution equations with self-consistent sources and the dressing method, J. Phys. A: Math. Theor., 46 (2013) · Zbl 1275.37034 · doi:10.1088/1751-8113/46/3/035204
[54] Zhu, JY; Geng, X., The AB equations and the Dbar-dressing method in semi-characteristic coordinates, Math. Phys. Anal. Geo., 17, 49-65 (2014) · Zbl 1302.37044 · doi:10.1007/s11040-014-9140-y
[55] Kuang, YH; Zhu, JY, A three-wave interaction model with self-consistent sources: the Dbar-dressing method and solutions, J. Math. Anal. Appl., 426, 783-793 (2015) · Zbl 1332.35204 · doi:10.1016/j.jmaa.2015.01.072
[56] Kuang, YH; Zhu, JY, The higher-order soliton solutions for the coupled Sasa-Satsuma system via the \(\bar{\partial } \)-dressing method, Appl. Math. Lett., 66, 47-53 (2017) · Zbl 1356.35084 · doi:10.1016/j.aml.2016.11.008
[57] Luo, JH; Fan, EG, \( \bar{\partial } \)-dressing method for the coupled Gerdjikov-Ivanov equation, Appl. Math. Lett., 110 (2020) · Zbl 1451.35191 · doi:10.1016/j.aml.2020.106589
[58] McLaughlin, KT-R; Miller, PD, The \(\bar{\partial }\) steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights, Int. Math. Res. Pap., 2006, 1-77 (2006) · Zbl 1133.45001
[59] McLaughlin, K.T.-R., Miller, P.D.: The \(\bar{\partial }\) steepest descent method for orthogonal polynomials on the real line with varying weights. Int. Math. Res. Notices rnn075 (2008) · Zbl 1157.42007
[60] Yang, Y.L., Fan, E.G.: Long-time asymptotic behavior of the modified schrödinger equation via \(\bar{\partial } \)-steepest descent method, arXiv:1912.10358
[61] Nachman, AI, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math. Lett., 143, 71-96 (1996) · Zbl 0857.35135 · doi:10.2307/2118653
[62] Nachman, A.; Regev, I.; Tataru, D., A nonlinear Plancherel theorem with applications to global well-posedness for the defocusing Davey-Stewartson equation and to the inverse boundary value problem of calderón, Int. Math., 220, 395-451 (2020) · Zbl 1436.35058
[63] Dubrovsky, VG; Topovsky, AV, Multi-lump solutions of KP equation with integrable boundary via \(\bar{\partial } \)-dressing method, Physica D, 414 (2020) · Zbl 1485.35114 · doi:10.1016/j.physd.2020.132740
[64] Zakharov, V.E., Gelash, A.A.: Soliton on unstable condensate, arXiv:1109.0620
[65] Faddeev, LD; Takhtajan, LA, Hamiltonian Methods in the Theory of Solitons (1987), Berlin: Springer, Berlin · Zbl 1111.37001 · doi:10.1007/978-3-540-69969-9
[66] Huang, N., Theory of Solitons and Method of Perturbations (1996), Shanghai: SSTEPH, Shanghai
[67] Han, JW; Yu, J.; He, JS, Determinant representation of n-times Darboux transformation for the defocusing nonlinear Schrödinger equation, Modern. Phys. Lett. B, 27, 1350216 (2013) · doi:10.1142/S0217984913502163
[68] Zhu, J.Y., Jiang, X.L., Wang, X.R.: Dbar dressing method to nonlinear Schrödinger equation with nonzero boundary conditions, arXiv:2011.09028
[69] Luo, JH; Fan, EG, Dbar-dressing method for the Gerdjikov-Ivanov equation with nonzero boundary conditions, Appl. Math. Lett., 120 (2021) · Zbl 1479.35809 · doi:10.1016/j.aml.2021.107297
[70] Huang, YH; Di, JJ; Yao, YQ, Dbar-dressing methods to nonlinear defocusing Hirota equation with nonzero boundary conditions, Res. Square (2022) · doi:10.21203/rs.3.rs-1701571/v1
[71] Wang, X.R.: Some Applications of Dbar Problem in Nonlocal Integrable Equations, Doctor Dissertation (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.