×

Quasi-periodic waves to the defocusing nonlinear Schrödinger equation. (English) Zbl 1537.37093

Summary: A direct approach for the quasi-periodic wave solutions to the defocusing nonlinear Schrödinger equation is proposed based on the theta functions and Hirota’s bilinear method. We transform the problem into a system of algebraic equations, which can be formulated into a least squares problem and then solved by using numerical iterative methods. A rigorous asymptotic analysis demonstrates that these solutions can be classified into two categories: quasi-periodic oscillatory waves and quasi-periodic dark solitons. Singular behaviors may arise in the former case. The numerical results obtained for both the \((1+1)\)-dimensional and \((2+1)\)-dimensional equations are consistent with the theoretical results. Additionaly, the system of algebraic equations can be further extended to address the Riemann-Schottky problem for hyperelliptic curves with 2 infinite points.
{© 2024 IOP Publishing Ltd & London Mathematical Society}

MSC:

37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
35Q55 NLS equations (nonlinear Schrödinger equations)
35B15 Almost and pseudo-almost periodic solutions to PDEs
Full Text: DOI

References:

[1] Van der Klis, M., Rapid x-ray variability, Compact Stellar X-ray Sources (Cambridge Astrophysics Series vol 39), p 39 (2006), Cambridge University Press
[2] Freedman, B.; Bartal, G.; Segev, M.; Lifshitz, R.; Christodoulides, D. N.; Fleischer, J. W., Wave and defect dynamics in nonlinear photonic quasicrystals, Nature, 440, 1166 (2006) · doi:10.1038/nature04722
[3] Dong, J. W.; Chang, M. L.; Huang, X. Q.; Hang, Z. H.; Zhong, Z. C.; Chen, W. J.; Huang, Z. Y.; Chan, C. T., Conical dispersion and effective zero refractive index in photonic quasicrystals, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.163901
[4] Osborne, A., Nonlinear Ocean Waves & the Inverse Scattering Transform (2010), Academic · Zbl 1250.86006
[5] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys. Rev. Lett., 64, 1196 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[6] Grishin, S. V.; Moskalenko, O. I.; Pavlov, A. N.; Romanenko, D. V.; Sadovnikov, A. V.; Sharaevskii, Y. P.; Sysoev, I. V.; Medvedeva, T. M.; Seleznev, E. P.; Nikitov, S. A., Space-quasiperiodic and time-chaotic parametric patterns in a magnonic quasicrystal active ring resonator, Phys. Rev. Appl., 16 (2021) · doi:10.1103/PhysRevApplied.16.054029
[7] Kivshar, Y. S.; Luther-Davies, B., Dark optical solitons: physics and applications, Phys. Rep., 298, 81 (1998) · doi:10.1016/S0370-1573(97)00073-2
[8] Burger, S.; Bongs, K.; Dettmer, S.; Ertmer, W.; Sengstock, K.; Sanpera, A.; Shlyapnikov, G. V.; Lewenstein, M., Dark solitons in Bose-Einstein condensates, Phys. Rev. Lett., 83, 5198 (1999) · doi:10.1103/PhysRevLett.83.5198
[9] Chabchoub, A.; Kimmoun, O.; Branger, H.; Hoffmann, N.; Proment, D.; Onorato, M.; Akhmediev, N., Experimental observation of dark solitons on the surface of water, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.124101
[10] Mamyshev, P. V.; Bosshard, C.; Stegeman, G. I., Generation of a periodic array of dark spatial solitons in the regime of effective amplification, J. Opt. Soc. Am. B, 11, 1254-60 (1994) · doi:10.1364/JOSAB.11.001254
[11] Ankiewicz, A., Soliton, rational and periodic solutions for the infinite hierarchy of defocusing nonlinear schrödinger equations, Phys. Rev. E, 94 (2016) · doi:10.1103/PhysRevE.94.012205
[12] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions With Formulas, Graphs and Mathematical tables, pp 555-66 (1972), Dover · Zbl 0543.33001
[13] Clausen, C. B.; Kivshar, Y. S.; Bang, O.; Christiansen, P. L., Quasiperiodic envelope solitons, Phys. Rev. Lett., 83, 4740 (1999) · doi:10.1103/PhysRevLett.83.4740
[14] Novikov, S. P., The periodic problem for the Korteweg-de Vries equation, Funct. Anal. Appl., 8, 236-46 (1974) · Zbl 0299.35017 · doi:10.1007/BF01075697
[15] Date, E.; Tanaka, S., Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice, Prog. Theor. Phys. Suppl., 59, 107-25 (1976) · doi:10.1143/PTPS.59.107
[16] Nakamura, A., A direct method of calculating periodic wave solutions to nonlinear evolution equations. II. Exact one- and two-periodic wave solution of the coupled bilinear equations, J. Phys. Soc. Japan, 48, 1365-70 (1980) · Zbl 1334.35250 · doi:10.1143/JPSJ.48.1365
[17] Cao, C. W.; Wu, Y. T.; Geng, X. G., On quasi-periodic solutions of the \(####\) dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation, Phys. Lett. A, 256, 59-65 (1999) · doi:10.1016/S0375-9601(99)00201-7
[18] Ma, W. X.; Zhou, R. G.; Gao, L., Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2+1) dimensions, Mod. Phys. Lett. A, 21, 1677-88 (2009) · Zbl 1168.35426 · doi:10.1142/S0217732309030096
[19] Fan, E. G., Quasi-periodic waves and an asymptotic property for the asymmetrical Nizhnik-Novikov-Veselov equation, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1165.35044 · doi:10.1088/1751-8113/42/9/095206
[20] Geng, X. G.; Wu, L. H.; He, G. L., Quasi-periodic solutions of nonlinear evolution equations associated with a \(####\) matrix spectral problem, Stud. Appl. Math., 127, 107-40 (2011) · Zbl 1243.37058 · doi:10.1111/j.1467-9590.2010.00513.x
[21] Trogdon, T.; Deconinck, B., Numerical computation of the finite-genus solutions of the Korteweg-de Vries equation via Riemann-Hilbert problems, Appl. Math. Lett., 26, 5-9 (2013) · Zbl 1255.65177 · doi:10.1016/j.aml.2012.07.019
[22] Tian, S. F.; Zhang, H. Q., Riemann theta functions periodic wave solutions and rational characteristics for the \(####\)-dimensional and \(####\)-dimensional Ito equation, Chaos Solitons Fractals, 47, 27-41 (2013) · Zbl 1258.35011 · doi:10.1016/j.chaos.2012.12.004
[23] Belokolos, E. D.; Bobenko, A. I.; Enolskii, V. Z.; Its, A. R.; Matveev, V. B., Algebro-Geometric Approach to Nonlinear Integrable Equations, vol 550 (1994), Springer · Zbl 0809.35001
[24] Bobenko, A. I.; Klein, C., Computational Approach to Riemann Surfaces (Lecture Notes in Mathematics vol 2013) (2011), Springer · Zbl 1207.14002
[25] Kalla, C.; Klein, C., On the numerical evaluation of algebro-geometric solutions to integrable equations, Nonlinearity, 25, 569 (2012) · Zbl 1251.37067 · doi:10.1088/0951-7715/25/3/569
[26] Ablowitz, M. J.; Cole, J. T.; Rumanov, I., On the Whitham system for the \(####\)-dimensional nonlinear Schrödinger equation, Stud. Appl. Math., 150, 380-419 (2023) · Zbl 1533.35303 · doi:10.1111/sapm.12543
[27] Abeya, A.; Biondini, G.; Hoefer, M. A., Whitham modulation theory for the defocusing nonlinear Schrödinger equation in two and three spatial dimensions, J. Phys. A: Math. Theor., 56 (2023) · Zbl 1517.35198 · doi:10.1088/1751-8121/acb117
[28] Dubrovin, B. A., Theta functions and non-linear equations, Russ. Math. Surv., 36, 11-92 (1981) · Zbl 0549.58038 · doi:10.1070/RM1981v036n02ABEH002596
[29] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge University Press · Zbl 1099.35111
[30] Buchstaber, V. M.; Krichever, I. M., Integrable equations, addition theorems and the Riemann-Schottky problem, Russ. Math. Surv., 61, 19-78 (2006) · Zbl 1134.14306 · doi:10.1070/RM2006v061n01ABEH004298
[31] Grushevsky, S., The Schottky problem, Current Developments in Algebraic Geometry, vol 59, pp 129-64 (2012), Cambridge University Press · Zbl 1254.14054
[32] Shiota, T., Characterization of Jacobian varieties in terms of soliton equations, Invent. Math., 83, 333-82 (1986) · Zbl 0621.35097 · doi:10.1007/BF01388967
[33] Hirota, R., Direct method of finding exact solutions of nonlinear evolution equations, Bäcklund Transformations, the Inverse Scattering Method, Solitons and Their Applications: NSF Research Workshop on Contact Transformations, pp 40-68 (2006), Springer · Zbl 0336.35024
[34] Benney, D. J.; Newell, A. C., The propagation of nonlinear wave envelopes, J. Math. Phys., 46, 133-9 (1967) · Zbl 0153.30301 · doi:10.1002/sapm1967461133
[35] Zakharov, V. E.; Shabat, A. B., Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34, 62-69 (1972)
[36] Kodama, Y., The Whitham equations for optical communications: mathematical theory of NRZ, SIAM J. Appl. Math., 59, 2162-92 (1999) · Zbl 0932.35193 · doi:10.1137/S0036139997328155
[37] Pitaevskii, L.; Stringari, S., Bose-Einstein Condensation and Superfluidity (2016), Oxford University Press · Zbl 1347.82004
[38] Krichever, I. M., Methods of algebraic geometry in the theory of nonlinear equations, Russ. Math. Surv., 32, 185-213 (1977) · Zbl 0386.35002 · doi:10.1070/RM1977v032n06ABEH003862
[39] Nakamura, A., A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. Exact two-periodic wave solution, J. Phys. Soc. Japan, 47, 1701-5 (1979) · Zbl 1334.35006 · doi:10.1143/JPSJ.47.1701
[40] de Leon, E. B.; Frauendiener, J.; Klein, C., Computational approach to the Schottky problem (2023)
[41] Akhmediev, N. N.; Ankiewicz, A., Solitons: Nonlinear Pulses and Beams (1997), Chapman & Hall
[42] Yang, J. K., Nonlinear Waves in Integrable and Nonintegrable Systems (2010), SIAM · Zbl 1234.35006
[43] Bilman, D.; Nabelek, P.; Trogdon, T., Computation of large-genus solutions of the Korteweg-de Vries equation, Physica D, 449 (2023) · Zbl 07695158 · doi:10.1016/j.physd.2023.133715
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.