×

The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation. (English) Zbl 1397.35087

Summary: We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation \[ - \Delta u = \left( \int_\Omega \frac{| u(y)|^{2_\mu^*}}{| {x - y} |^\mu}dy \right)| u|^{2_\mu^* - 2}u + \lambda u \quad\text{in }\Omega, \] where \(\Omega\) is a bounded domain of \(\mathbb R^N\) with Lipschitz boundary, \(\lambda\) is a real parameter, \(N\geqslant 3\), \(2_\mu^* = \left( {2N - \mu} \right)/\left( {N - 2} \right)\) is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.

MSC:

35J25 Boundary value problems for second-order elliptic equations
35J60 Nonlinear elliptic equations

References:

[1] Ackermann, N, On a periodic Schrödinger equation with nonlocal superlinear part, Math Z, 248, 423-443, (2004) · Zbl 1059.35037 · doi:10.1007/s00209-004-0663-y
[2] Alves, C O; Cassani, D; Tarsi, C; etal., Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in R\^{}{2}, J Differential Equations, 261, 1933-1972, (2016) · Zbl 1347.35096 · doi:10.1016/j.jde.2016.04.021
[3] Alves, C O; Nóbrega, A B; Yang, M B, Multi-bump solutions for Choquard equation with deepening potential well, 55, (2016) · Zbl 1347.35097
[4] Alves, C O; Yang, M B, Existence of semiclassical ground state solutions for a generalized Choquard equation, J Differential Equations, 257, 4133-4164, (2014) · Zbl 1309.35036 · doi:10.1016/j.jde.2014.08.004
[5] Alves, C O; Yang, M B, Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method, Proc Roy Soc Edinburgh Sect A, 146, 23-58, (2016) · Zbl 1366.35050 · doi:10.1017/S0308210515000311
[6] Barrios, B; Colorado, E; Servadei, R; etal., A critical fractional equation with concave-convex power nonlinearities, Ann Inst H Poincaré Anal Non Linéaire, 32, 875-900, (2015) · Zbl 1350.49009 · doi:10.1016/j.anihpc.2014.04.003
[7] Brézis, H; Lieb, E, A relation between pointwise convergence of functions and convergence of functionals, Proc Amer Math Soc, 88, 486-490, (1983) · Zbl 0526.46037 · doi:10.2307/2044999
[8] Brézis, H; Nirenberg, L, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun Pure Appl Math, 36, 437-477, (1983) · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[9] Buffoni, B; Jeanjean, L; Stuart, C A, Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc Amer Math Soc, 119, 179-186, (1993) · Zbl 0789.35052 · doi:10.1090/S0002-9939-1993-1145940-X
[10] Cao, D M; Peng, S J, A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J Differential Equations, 193, 424-434, (2003) · Zbl 1140.35412 · doi:10.1016/S0022-0396(03)00118-9
[11] Capozzi, A; Fortunato, D; Palmieri, G, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, An Inst H Poincaré Anal Non Linéaire, 2, 463-470, (1985) · Zbl 0612.35053 · doi:10.1016/S0294-1449(16)30395-X
[12] Cerami, G; Fortunato, D; Struwe, M, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann Inst H Poincaré Anal Non Linéaire, 1, 341-350, (1984) · Zbl 0568.35039 · doi:10.1016/S0294-1449(16)30416-4
[13] Cerami, G; Solimini, S; Struwe, M, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J Funct Anal, 69, 289-306, (1986) · Zbl 0614.35035 · doi:10.1016/0022-1236(86)90094-7
[14] Cingolani, S; Clapp, M; Secchi, S, Multiple solutions to a magnetic nonlinear Choquard equation, Z Angew Math Phys, 63, 233-248, (2012) · Zbl 1247.35141 · doi:10.1007/s00033-011-0166-8
[15] Clapp, M; Salazar, D, Positive and sign changing solutions to a nonlinear Choquard equation, J Math Anal Appl, 407, 1-15, (2013) · Zbl 1310.35114 · doi:10.1016/j.jmaa.2013.04.081
[16] Ferrero, A; Gazzola, F, Existence of solutions for singular critical growth semilinear elliptic equations, J Differential Equations, 177, 494-552, (2001) · Zbl 0997.35017 · doi:10.1006/jdeq.2000.3999
[17] Ghimenti, M V; Schaftingen, J, Nodal solutions for the Choquard equation, J Funct Anal, 271, 107-135, (2016) · Zbl 1345.35046 · doi:10.1016/j.jfa.2016.04.019
[18] Ghoussoub, N; Yuan, C, Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponent, Trans Amer Math Soc, 352, 5703-5743, (2000) · Zbl 0956.35056 · doi:10.1090/S0002-9947-00-02560-5
[19] Janneli, E, The role played by space dimension in elliptic critical problems, J Differential Equations, 156, 407-426, (1999) · Zbl 0938.35058 · doi:10.1006/jdeq.1998.3589
[20] Lieb, E, Existence and uniqueness of the minimizing solution of choquard’s nonlinear equation, Stud Appl Math, 57, 93-105, (1977) · Zbl 0369.35022 · doi:10.1002/sapm197757293
[21] Lieb E, Loss M. Analysis. Graduate Studies in Mathematics. Providence: Amer Math Soc, 2001 · Zbl 0966.26002
[22] Lions, P, The Choquard equation and related questions, Nonlinear Anal, 4, 1063-1072, (1980) · Zbl 0453.47042 · doi:10.1016/0362-546X(80)90016-4
[23] Ma, L; Zhao, L, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch Ration Mech Anal, 195, 455-467, (2010) · Zbl 1185.35260 · doi:10.1007/s00205-008-0208-3
[24] Moroz, V; Schaftingen, J, Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J Funct Anal, 265, 153-184, (2013) · Zbl 1285.35048 · doi:10.1016/j.jfa.2013.04.007
[25] Moroz, V; Schaftingen, J, Existence of groundstates for a class of nonlinear Choquard equations, Trans Amer Math Soc, 367, 6557-6579, (2015) · Zbl 1325.35052 · doi:10.1090/S0002-9947-2014-06289-2
[26] Moroz, V; Schaftingen, J, Semi-classical states for the Choquard equation, Calc Var Partial Differential Equations, 52, 199-235, (2015) · Zbl 1309.35029 · doi:10.1007/s00526-014-0709-x
[27] Moroz, V; Schaftingen, J, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun Contemp Math, 17, 1550005, (2015) · Zbl 1326.35109 · doi:10.1142/S0219199715500054
[28] Pekar S. Untersuchungüber die Elektronentheorie der Kristalle. Berlin: Akademie Verlag, 1954 · Zbl 0058.45503
[29] Penrose, R, On gravity’s role in quantum state reduction, Gen Relativity Gravitation, 28, 581-600, (1996) · Zbl 0855.53046 · doi:10.1007/BF02105068
[30] Rabinowitz P. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 65. Providence: Amer Math Soc, 1986 · Zbl 0609.58002
[31] Riesz, M, L’intégrale de Riemann-Liouville et le probl‘eme de Cauchy, Acta Math, 81, 1-223, (1949) · Zbl 0033.27601 · doi:10.1007/BF02395016
[32] Schechter, M; Zou, W M, On the brézis-Nirenberg problem, Arch Ration Mech Anal, 197, 337-356, (2010) · Zbl 1200.35137 · doi:10.1007/s00205-009-0288-8
[33] Secchi, S, A note on Schrödinger-Newton systems with decaying electric potential, Nonlinear Anal, 72, 3842-3856, (2010) · Zbl 1187.35254 · doi:10.1016/j.na.2010.01.021
[34] Servadei, R; Valdinoci, E, The Brezis-Nirenberg result for the fractional Laplacian, Trans Amer Math Soc, 367, 67-102, (2015) · Zbl 1323.35202 · doi:10.1090/S0002-9947-2014-05884-4
[35] Tan, J G, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc Var Partial Differential Equations, 42, 21-41, (2011) · Zbl 1248.35078 · doi:10.1007/s00526-010-0378-3
[36] Wei, J C; Winter, M, Strongly interacting bumps for the Schrödinger-Newton equations, J Math Phys, 50, 012905, (2009) · Zbl 1189.81061 · doi:10.1063/1.3060169
[37] Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Boston: Birkhäuser, 1996 · Zbl 1347.35097
[38] Willem M. Functional Analysis. Fundamentals and Applications. Cornerstones, vol. 14. New York: Birkhäuser/Springer, 2013 · Zbl 1284.46001
[39] Yang, M B; Ding, Y H, Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part, Commun Pure Appl Anal, 12, 771-783, (2013) · Zbl 1270.35218 · doi:10.3934/cpaa.2013.12.771
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.