×

On the generalised Brézis-Nirenberg problem. (English) Zbl 1510.35041

For \(p \in (1, N)\) and a weight function \(g\), the authors study positive solutions \(u\) to the equation \[ -\Delta_p u - \mu g u^{p-1} = u^{\frac{Np}{N-p}- 1 } \] with a parameter \(\mu > 0\), on a domain \(\Omega \subset \mathbb R^N\). The exponent on the right side being Sobolev-critical, the existence of a positive solution through a variational argument is not straightforward.
The authors give sufficient conditions on \(g\) so that a positive solution exists for some range of \(\mu > 0\). These conditions consist in strict inequalities for certain variational quantities, in the spirit of the classical result by H. Brézis et al. [Commun. Pure Appl. Math. 36, 437–477 (1983; Zbl 0541.35029)] for \(p=2\). Unbounded domains \(\Omega\) are also considered, and special attention is paid to treating a natural optimal class of functions \(g\), namely \(g\) for which a Hardy-type inequality with exponent \(p\) holds. When the above conditions fail, the authors show that a variant of them, which also leads to existence, can sometimes be restored under additional symmetry assumptions on \(g\) and \(\Omega\). Finally, a Pohozaev-type identity for solutions on \(\Omega = \mathbb R^N\) is shown.

MSC:

35B33 Critical exponents in context of PDEs
35J60 Nonlinear elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
58E30 Variational principles in infinite-dimensional spaces

Citations:

Zbl 0541.35029

References:

[1] Aliprantis, CD; Border, KC, Infinite Dimensional Analysis. A Hitchhiker’s Guide (2006), Berlin: Springer, Berlin · Zbl 1156.46001
[2] Allegretto, W., Principal eigenvalues for indefinite-weight elliptic problems in \(\mathbb{R}^n\), Proc. Am. Math. Soc., 116, 3, 701-706 (1992) · Zbl 0764.35031
[3] Ambrosetti, A.; Brezis, H.; Cerami, G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122, 2, 519-543 (1994) · Zbl 0805.35028
[4] Anoop, T.V.: On weighted eigenvalue problems and applications. Ph.D Thesis (2011)
[5] Anoop, TV, Weighted eigenvalue problems for the \(p\)-Laplacian with weights in weak Lebesgue spaces, Electron. J. Differ. Equ., 22, 64 (2011) · Zbl 1226.35062
[6] Anoop, TV; Das, U., The compactness and the concentration compactness via p-capacity, Annali di Matematica Pura ed Applicata (1923 -), 200, 6, 2715-2740 (2021) · Zbl 1476.28001
[7] Anoop, TV; Drábek, P.; Sasi, S., Weighted quasilinear eigenvalue problems in exterior domains, Calc. Var. Partial Differ. Equ., 53, 3-4, 961-975 (2015) · Zbl 1333.35138
[8] Anoop, TV; Lucia, M.; Ramaswamy, M., Eigenvalue problems with weights in Lorentz spaces, Calc. Var. Partial Differ. Equ., 36, 3, 355-376 (2009) · Zbl 1188.35124
[9] Badiale, M.; Tarantello, G., A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal., 163, 4, 259-293 (2002) · Zbl 1010.35041
[10] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 3, 486-490 (1983) · Zbl 0526.46037
[11] Brézis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36, 4, 437-477 (1983) · Zbl 0541.35029
[12] Cao, D.; Peng, S.; Yan, S., Infinitely many solutions for \(p\)-Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262, 6, 2861-2902 (2012) · Zbl 1238.35038
[13] Capozzi, A.; Fortunato, D.; Palmieri, G., An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2, 6, 463-470 (1985) · Zbl 0612.35053
[14] Cencelj, M.; Repovš, D.; Virk, V., Multiple perturbations of a singular eigenvalue problem, Nonlinear Anal., 119, 37-45 (2015) · Zbl 1328.35007
[15] Chabrowski, J., Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differ. Equ., 3, 4, 493-512 (1995) · Zbl 0838.35035
[16] Chabrowski, J., On multiple solutions for the nonhomogeneous \(p\)-Laplacian with a critical Sobolev exponent, Differ. Integr. Equ., 8, 4, 705-716 (1995) · Zbl 0814.35033
[17] Clapp, M.: A global compactness result for elliptic problems with critical nonlinearity on symmetric domains. In: Nonlinear equations: methods, models and applications (Bergamo, 2001), volume 54 of Progr. Nonlinear Differential Equations Appl., pp. 117-126. Birkhäuser, Basel ( 2003) · Zbl 1108.35332
[18] Clapp, M.; Weth, T., Multiple solutions for the Brezis-Nirenberg problem, Adv. Differ. Equ., 10, 4, 463-480 (2005) · Zbl 1284.35151
[19] Clément, P.; de Figueiredo, DG; Mitidieri, E., Quasilinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal., 7, 1, 133-170 (1996) · Zbl 0939.35072
[20] Conway, JB, A Course in Functional Analysis, volume 96 of Graduate Texts in Mathematics (1990), New York: Springer, New York · Zbl 0706.46003
[21] Cuesta, M.; Takáč, P., A strong comparison principle for positive solutions of degenerate elliptic equations, Differ. Integr. Equ., 13, 4-6, 721-746 (2000) · Zbl 0973.35077
[22] Drábek, P.; Huang, YX, Multiplicity of positive solutions for some quasilinear elliptic equation in \({ R}^N\) with critical Sobolev exponent, J. Differ. Equ., 140, 1, 106-132 (1997) · Zbl 0902.35035
[23] Egnell, H., Existence and nonexistence results for \(m\)-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal., 104, 1, 57-77 (1988) · Zbl 0675.35036
[24] Evans. L.C.: Partial differential equations, volume 19 (2010) · Zbl 1194.35001
[25] Federer, H., Geometric measure theory Die Grundlehren der mathematischen Wissenschaften (1969), New York: Springer, New York · Zbl 0176.00801
[26] García Azorero, J.; Peral Alonso, I., Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Am. Math. Soc, 323, 2, 877-895 (1991) · Zbl 0729.35051
[27] García Azorero, JP; Peral Alonso, I., Existence and nonuniqueness for the \(p\)-Laplacian: nonlinear eigenvalues, Commun. Partial Differ. Equ., 12, 12, 1389-1430 (1987) · Zbl 0637.35069
[28] Ghoussoub, N.; Yuan, C., Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Am. Math. Soc., 352, 12, 5703-5743 (2000) · Zbl 0956.35056
[29] Guedda, M.; Véron, L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13, 8, 879-902 (1989) · Zbl 0714.35032
[30] Hsu, T-S, Multiplicity results for \(p\)-Laplacian with critical nonlinearity of concave-convex type and sign-changing weight functions, Abstr. Appl. Anal., 24 (2009) · Zbl 1179.35134
[31] Huang, Y., On multiple solutions of quasilinear equations involving the critical Sobolev exponent, J. Math. Anal. Appl., 231, 1, 142-160 (1999) · Zbl 0922.35056
[32] Kawohl, B.; Lucia, M.; Prashanth, S., Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differ. Equ., 12, 4, 407-434 (2007) · Zbl 1158.35069
[33] Kazdan, JL; Warner, FW, Remarks on some quasilinear elliptic equations, Commun. Pure Appl. Math., 28, 5, 567-597 (1975) · Zbl 0325.35038
[34] Kesavan, S., Topics in Functional Analysis and Applications (1989), New York: Wiley, New York · Zbl 0666.46001
[35] Kobayashi, J.; Ôtani, M., The principle of symmetric criticality for non-differentiable mappings, J. Funct. Anal., 214, 2, 428-449 (2004) · Zbl 1077.49016
[36] Kristály, A.; Varga, C.; Varga, V., A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities, J. Math. Anal. Appl., 325, 1, 975-986 (2007) · Zbl 1182.49007
[37] Lions, P-L, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., 49, 3, 315-334 (1982) · Zbl 0501.46032
[38] Lions, P.L.: The concentration-compactness principle in the calculus of variations: the locally compact cases I & II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109-145, 223-283 (1984) · Zbl 0704.49004
[39] Lions, P.L.: The concentration-compactness principle in the calculus of variations: The limit cases I & II. Rev. Mat. Iberoamericana 1(1), 45-121, 145-201 (1985) · Zbl 0704.49005
[40] Manes, A.; Micheletti, AM, Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital., 4, 7, 285-301 (1973) · Zbl 0275.49042
[41] Mercuri, C.; Pacella, F., On the pure critical exponent problem for the \(p\)-Laplacian, Calc. Var. Partial Differ. Equ., 49, 3-4, 1075-1090 (2014) · Zbl 1292.35140
[42] Miyagaki, OH, On a class of semilinear elliptic problems in \({ R}^N\) with critical growth, Nonlinear Anal., 29, 7, 773-781 (1997) · Zbl 0877.35043
[43] Noussair, ES; Swanson, CA; Yang, JF, Quasilinear elliptic problems with critical exponents, Nonlinear Anal., 20, 3, 285-301 (1993) · Zbl 0785.35042
[44] Palais, RS, The principle of symmetric criticality, Commun. Math. Phys., 69, 1, 19-30 (1979) · Zbl 0417.58007
[45] Peral, I.: Multiplicity of solutions for the p-laplacian, lecture notes for the second school of nonlinear functional analysis and applications to differential equations. International Centre of Theoretical Physics—Trieste (Italy) (1997)
[46] Ruiz, D.; Willem, M., Elliptic problems with critical exponents and Hardy potentials, J. Differ. Equ., 190, 2, 524-538 (2003) · Zbl 1163.35383
[47] Schechter, M.; Zou, W., On the Brézis-Nirenberg problem, Arch. Ration. Mech. Anal., 197, 1, 337-356 (2010) · Zbl 1200.35137
[48] Swanson, CA; Yu, LS, Critical \(p\)-Laplacian problems in \({ R}^N\), Ann. Mat. Pura Appl., 4, 169, 233-250 (1995) · Zbl 0852.35044
[49] Tertikas, A., Critical phenomena in linear elliptic problems, J. Funct. Anal., 154, 1, 42-66 (1998) · Zbl 0920.35044
[50] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ., 51, 1, 126-150 (1984) · Zbl 0488.35017
[51] Visciglia, N., A note about the generalized Hardy-Sobolev inequality with potential in \(L^{p, d}({\mathbb{R} }^n)\), Calc. Var. Partial Differ. Equ., 24, 2, 167-184 (2005) · Zbl 1073.26011
[52] Waliullah, S., Minimizers and symmetric minimizers for problems with critical Sobolev exponent, Topol. Methods Nonlinear Anal., 34, 2, 291-326 (2009) · Zbl 1200.35128
[53] Willem, M., Minimax Theorems: Progress in Nonlinear Differential Equations and their Applications (1996), Boston: Birkhäuser, Boston · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.