×

Characterizations of Sobolev spaces with variable exponent via averages on balls. (English) Zbl 1490.46033

This work is based on the approach used in the paper of [R. Alabern et al., Math. Ann. 354, No. 2, 589–626 (2012; Zbl 1267.46048)] where Sobolev spaces \(W^{\alpha,p}(\mathbb R^n)\) with \(\alpha\in[1,\infty)\) and the constant exponent \(p\in(1,\infty)\) were characterized. In the present paper, the author derives analogous characterization of the Sobolev spaces \(W^{\alpha,p(\cdot)}(\mathbb R^n)\) where \(\alpha\in[1,\infty)\) and \(p(\cdot)\) is a variable exponent which belongs to the globally log-Hölder continuous class \(C^{\log}(\mathbb R^n)\). Notice that this method can be used to define Sobolev spaces with variable exponent on metric spaces.
Reviewer: Petr Gurka (Praha)

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
42B25 Maximal functions, Littlewood-Paley theory
42B35 Function spaces arising in harmonic analysis

Citations:

Zbl 1267.46048
Full Text: DOI

References:

[1] R. Alabern, J. Mateu and J. Verdera, A new characterization of Sobolev spaces on \(\mathbb{R}^n\), Math. Ann. 354 (2012), 589-626. · Zbl 1267.46048 · doi:10.1007/s00208-011-0738-0
[2] A. Almeida and D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl. 394 (2012), no. 2, 781-795. · Zbl 1250.42077 · doi:10.1016/j.jmaa.2012.04.043
[3] A. Almeida, J. Hasanov and S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J. 15 (2008), no. 2, 195-208. · Zbl 1263.42002
[4] A. Almeida and P. Hästö, Besov spaces with variable smoothness and integrability, J. Funct. Anal. 258 (2010), no. 5, 1628-1655. · Zbl 1194.46045 · doi:10.1016/j.jfa.2009.09.012
[5] Y. Chen, S. Levine and R. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406. · Zbl 1102.49010 · doi:10.1137/050624522
[6] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Birkhäuser, Heidelberg, 2013. · Zbl 1268.46002
[7] F. Dai, A. Gogatishvili, D. Yang and W. Yuan, Characterization of Sobolev spaces via averages on balls, Nonlinear Anal. 128 (2015), no. 1, 86-99. · Zbl 1346.46023 · doi:10.1016/j.na.2015.07.024
[8] L. Diening, P. Harjulehto, P. Hästö and M. R, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017. Springer, Heidelberg, 2011. · Zbl 1222.46002
[9] L. Diening, P. Hästö and S. Roudenko, Function spaces of variable smoothness and integrability, J. Funct. Anal. 256 (2009), no. 6, 1731-1768. · Zbl 1179.46028 · doi:10.1016/j.jfa.2009.01.017
[10] P. Gurka, P. Harjulehto and A. Nekvinda, Bessel potential spaces with variable exponent, Math. Inequal. Appl. 10 (2007), no. 3, 661-676. · Zbl 1129.46025 · doi:10.7153/mia-10-61
[11] P. Hajłasz and Z. Liu, A Marcinkiewicz integral type characterization of the Sobolev space, Publ. Mat. 61 (2017), no. 1, 83-104. · Zbl 1376.46027 · doi:10.5565/PUBLMAT_61117_03
[12] P. Harjulehto, P. Hästö, V. Latvala and O. Toivanen, Critical variable exponent functionals in image restoration, Appl. Math. Lett. 26 (2013), no. 1, 56-60. · Zbl 1260.94012 · doi:10.1016/j.aml.2012.03.032
[13] P. Harjulehto, P. Hästö, U. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal. 72(2010), no. 2, 4551-4574. · Zbl 1188.35072 · doi:10.1016/j.na.2010.02.033
[14] P. Hästö and A. M. Ribeiro, Characterization of the variable exponent Sobolev norm without derivatives, Commun Contemp Math. 19 (2017), 1650022, 13 pp. · Zbl 1408.46035 · doi:10.1142/S021919971650022X
[15] M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math. 36 (2010), no. 1, 33-50. · Zbl 1224.42025 · doi:10.1007/s10476-010-0102-8
[16] M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo (2) 59 (2010), no. 2, 199-213. · Zbl 1202.42029 · doi:10.1007/s12215-010-0015-1
[17] M. Izuki, Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent, Glas. Mat., III. Ser. 45 (2010), no. 2, 475-503. · Zbl 1211.42014 · doi:10.3336/gm.45.2.14
[18] M. Izuki, Wavelet characterization of Sobolev spaces with variable exponent, J. Appl. Anal. 17(2011), no. 1, 37-49. · Zbl 1276.42025 · doi:10.1515/jaa.2011.002
[19] J. Jia, J. Peng and J. Gao, Bayesian approach to inverse problems for functions with variable index Besov prior, Inverse Problems 32 (2016), 085006, 32 pp. · Zbl 1366.62048 · doi:10.1088/0266-5611/32/8/085006
[20] H. Kempka, 2-microlocal Besov and Triebel-Lizorkin spaces of variable integrability, Rev. Mat. Complut. 22 (2009), no. 1, 227-251. · Zbl 1166.42011 · doi:10.5209/rev_REMA.2009.v22.n1.16353
[21] H. Kempka, Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces, J. Funct. Spaces Appl. 8 (2010), no. 2, 129-165. · Zbl 1207.42020 · doi:10.1155/2010/469513
[22] O. Kováčik and J. Rákosník, On spaces \(L\sp{p(x)}\) and \(W\sp{k,p(x)} \), Czechoslovak Math. J. 41 (116) (1991), no. 4, 592-618. · Zbl 0784.46029
[23] F. Li, Z. Li and L. Pi, Variable exponent functionals in image restoration, Appl. Math. Comput. 216 (2010), no. 3, 870-882. · Zbl 1186.94010 · doi:10.1016/j.amc.2010.01.094
[24] E. Nakaia and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665-3748. · Zbl 1244.42012
[25] A. Nekvinda, Hardy-Littlewood maximal operator on \(L\sp{p(x)}(\Bbb R)\), Math. Inequal. Appl. 7 (2004), no. 2, 255-265. · Zbl 1059.42016 · doi:10.7153/mia-07-28
[26] T. Noi, Duality of variable exponent Triebel-Lizorkin and Besov spaces, J. Funct. Spaces Appl. 2012 (2012), Art. ID 361807, 19 pp. · Zbl 1242.46043 · doi:10.1155/2012/361807
[27] H. Rafeiro and S. Samko, Characterization of the variable exponent Bessel potential spaces via the Poisson semigroup, J. Math. Anal. Appl. 365 (2010), no. 2, 483-497. · Zbl 1194.46044 · doi:10.1016/j.jmaa.2009.11.008
[28] M. R, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748. Springer, Berlin, 2000.
[29] S. Samko, Variable exponent Herz spaces, Mediterr. J. Math. 10 (2013), no. 4, 2007-2025. · Zbl 1285.46027 · doi:10.1007/s00009-013-0285-x
[30] R. Schneider, O. Reichmann and C. Schwab, Wavelet solution of variable order pseudodifferential equations, Calcolo 47 (2010), no. 2, 65-101. · Zbl 1202.65013 · doi:10.1007/s10092-009-0012-y
[31] C. Shen and J. Xu, Calderón-Zygmund operators on Banach space valued Lebesgue spaces with variable exponent, Adv. Math. (China) 46 (2017), no. 3, 441-452. · Zbl 1389.42032
[32] C. Shi and J. Xu, Herz type Besov and Triebel-Lizorkin spaces with variable exponent, Front. Math. China 8 (2013), no. 4, 907-921. · Zbl 1297.46029 · doi:10.1007/s11464-012-0248-8
[33] J. Tiirola, Image decompositions using spaces of variable smoothness and integrability, SIAM J. Imaging Sci. 7 (2014), no. 3, 1558-1587. · Zbl 1308.94024 · doi:10.1137/130923324
[34] J. Xu, The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces, Integral Transforms Spec. Funct. 19 (2008), no. 7-8, 599-605. · Zbl 1160.46024 · doi:10.1080/10652460802030631
[35] J. Xu, Variable Besov and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 2, 511-522. · Zbl 1160.46025
[36] X. Yan, D. Yang, W. Yuan and C. Zhuo, Variable weak Hardy spaces and their applications, J. Funct. Anal. 271 (2016), no. 10, 2822-2887. · Zbl 1440.42100 · doi:10.1016/j.jfa.2016.07.006
[37] D. Yang, W. Yuan and C. Zhuo, Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal. 9 (2015), no. 4, 146-202. · Zbl 1339.46040 · doi:10.15352/bjma/09-4-9
[38] D. Yang and C. Zhuo, Molecular characterizations and dualities of variable exponent Hardy spaces associated with operators, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 1, 357-398. · Zbl 1343.42028 · doi:10.5186/aasfm.2016.4125
[39] D. Yang, C. Zhuo and E. Nakai, Characterizations of variable exponent Hardy spaces via Riesz transforms, Rev. Mat. Complut. 29 (2016), no. 2, 245-270. · Zbl 1337.42025 · doi:10.1007/s13163-016-0188-z
[40] D. Yang, C. Zhuo and W. Yuan, Besov-type spaces with variable smoothness and integrability, J. Funct. Anal. 269 (2015), no. 6, 1840-1898. · Zbl 1342.46038 · doi:10.1016/j.jfa.2015.05.016
[41] S. Yang, D. Yang and W. Yuan, New characterizations of Musielak-Orlicz-Sobolev spaces via sharp ball averaging functions, Front. Math. China 14 (2019), no. 1, 177-201. · Zbl 1425.46024 · doi:10.1007/s11464-019-0744-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.