×

Global stability of solutions in a reaction-diffusion system of predator-prey model. (English) Zbl 1499.35076

Summary: In this article, we investigate the global asymptotic stability of a reaction-diffusion system of predator-prey model. By applying the comparison principle and iteration method, we prove the global asymptotic stability of the unique positive equilibrium solution of (1.1).

MSC:

35B35 Stability in context of PDEs
35K57 Reaction-diffusion equations
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] J. R. Beddington. Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol 44(1975) 331-340.
[2] D. L. Deangelis, R. A. Goldstein, R. V. O’Neill. A model for tropic interaction, Ecology 56(1975) 881-892.
[3] G. Huang, W. Ma, Y. Takeuchi. Global properties for virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Lett. 22(2009) 1690-1693. · Zbl 1178.37125
[4] G. Huang, W. Ma, Y. Takeuchi. Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Lett. 24(2011), 1199-1203. · Zbl 1217.34128
[5] N. W. Liu, T. T. Kong. Dynamics of a predator-prey system with Beddington-DeAngelis functional response and delays, Abstr. Appl. Anal. 2014, Art. ID 930762, 8 pp. · Zbl 1474.92082
[6] R. Peng, M. Wang. Positive steady states of the Holling-Tanner prey-predator model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A 135(2005) 149-164. · Zbl 1144.35409
[7] R. Peng, M. Wang. Global stability of the equilibrium of a diffusive Holling-Tanner prey-predador model, Appl. Math. Lett. 20(2007), 664-670. · Zbl 1125.35009
[8] Chen, S. S., Shi, J. P.: Global stability in a diffusive Holling-Tanner predator-prey model, Appl. Math. Lett. 25(2012) 614-618. · Zbl 1387.35334
[9] J. T. Tanner. The stability and the intrinsic growth rates of prey and predator populations, Ecology 56(1975) 56, 855-867.
[10] R. M. May. Stability and complexity in model ecosystems, Princeton University Press, 1973.
[11] P. H. Leslie. Some further notes on the use of matrices in population mathematics, Biometrika 35(1948) 213-245. · Zbl 0034.23303
[12] P. H. Leslie, J. C. Gower. The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika 47(1960) 219-234. · Zbl 0103.12502
[13] Y. Qi, Y. Zhu. The study of global stability of a diffusive Holling-Tanner predator-prey model, Appl. Math. Lett. 57(2016) 132-138. · Zbl 1334.35132
[14] Y. H. Fan, W. T. Li. Global asymptotic stability of a ratio-dependent predator-prey system with diffusion, J. Comput. Appl. Math. 188(2006) 205-227. · Zbl 1093.35039
[15] Y. H. Fan, W. T. Li. Permanence in delayed ratio-dependent predator-prey models with monotonic functional responses, Nonlinear Anal. Real World Appl. 8(2007) 424-434. · Zbl 1152.34368
[16] Y. H. Fan, L. L. Wang. On a generalized discrete ratio-dependent predator-prey system, Discrete Dyn. Nat. Soc. 2009 Art. ID 653289, 22 pp. · Zbl 1178.39021
[17] Y. H. Fan, L. L. Wang. Multiplicity of periodic solutions for a delayed ratio-dependent predator-prey model with Holling type III functional response and harvesting terms, J. Math. Anal. Appl. 365(2010) 525-540. · Zbl 1188.34112
[18] Y. H. Fan, L. L. Wang. Average conditions for the permanence of a bounded discrete predator-prey system, Discrete Dyn. Nat. Soc. 2013 Art. ID 508686, 5 pp. · Zbl 1417.92130
[19] H. B. Shi, Y. Li. Global asymptotic stability of a diffusive predator-prey model with ratio-dependent functional response, Appl. Math. Comput. 25(2015) 71-77. · Zbl 1328.35253
[20] X. Song, A. Neumann. Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl. 329(2007) 281-297. · Zbl 1105.92011
[21] C. Bianca, M. Pennisi, S. Motta, M. A. Ragusa. Immune System Network and Cancer Vaccine, American Institute of Physics, 1389(2011) 945-948.
[22] C. Bianca, F. Pappalardo, M. Pennisi, M. A. Ragusa. Persistence analysis in a Kolmogorov-type model for cancer-immune system competition, AIP Conference Proceedings, 1558(2013) 1797-1800.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.