×

New analytic free vibration solutions of orthotropic rectangular plates by a novel symplectic approach. (English) Zbl 1428.74095

Summary: This paper aims at analytically solving the free vibration problems of orthotropic rectangular plates, which have found broad applications as a class of crucial aerostructures. A novel symplectic superposition method is presented to give analytic solutions of plates without two opposite edges simply supported (i.e., non-Lévy-type plates). Since these solutions are very difficult to obtain within the classical Lagrangian system framework, the new approach proceeds in the Hamiltonian system, in physics, and in the symplectic space, in mathematics. The validity of separation of variables and symplectic eigenexpansion guarantees the realization of new analytic solutions in a rigorous step-by-step way, which cannot be achieved by some classical analytic methods where the predetermination of solution forms is usually inevitable. Representative challenging problems, including those incorporating two adjacent free edges (e.g., cantilever and free plates), are successfully solved and validated by the refined finite element modeling. Comprehensive natural frequency and mode shape results show the accuracy of the present solutions. The generality of the symplectic superposition method enables one to pursue more analytic solutions of similar problems that are governed by higher-order partial differential equations.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
74K20 Plates

Software:

ABAQUS
Full Text: DOI

References:

[1] Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, Auckland (1959) · Zbl 0114.40801
[2] Gorman, D.J.: Accurate in-plane free vibration analysis of rectangular orthotropic plates. J. Sound Vib. 323(1-2), 426-443 (2009) · doi:10.1016/j.jsv.2008.12.021
[3] Gorman, D.J.: Free vibration analysis of the completely free rectangular plate by the method of superposition. J. Sound Vib. 57(3), 437-447 (1978) · Zbl 0375.70013 · doi:10.1016/0022-460X(78)90322-X
[4] Li, R., Zhong, Y., Tian, B., Liu, Y.: On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Appl. Math. Lett. 22(12), 1821-1827 (2009) · Zbl 1182.35214 · doi:10.1016/j.aml.2009.07.003
[5] Lim, C.W., Xu, X.S.: Symplectic elasticity: theory and applications. Appl. Mech. Rev. 63(5), 050802 (2010) · doi:10.1115/1.4003700
[6] Leissa, A.W.: Vibration of Plates. Office of Technology Utilization, NASA, Washington DC (1969)
[7] Civalek, Ö.: Numerical solutions to the free vibration problem of Mindlin sector plates using the discrete singular convolution method. Int. J. Struct. Stab. Dyn. 9(2), 267-284 (2009) · Zbl 1271.74141 · doi:10.1142/S0219455409003028
[8] Civalek, Ö.: Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos. Part B Eng. 111, 45-59 (2017) · doi:10.1016/j.compositesb.2016.11.030
[9] Civalek, Ö., Ersoy, H.: Free vibration and bending analysis of circular Mindlin plates using singular convolution method. Commun. Numer. Methods Eng. 25(8), 907-922 (2009) · Zbl 1172.74025 · doi:10.1002/cnm.1138
[10] Wei, G.W.: Discrete singular convolution for the solution of the Fokker-Planck equation. J. Chem. Phys. 110(18), 8930-8942 (1999) · doi:10.1063/1.478812
[11] Civalek, Ö., Acar, M.H.: Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int. J. Press. Vessels Pip. 84(9), 527-535 (2007) · doi:10.1016/j.ijpvp.2007.07.001
[12] Baltacıoglu, A.K., Akgöz, B., Civalek, Ö.: Nonlinear static response of laminated composite plates by discrete singular convolution method. Compos. Struct. 93(1), 153-161 (2010) · doi:10.1016/j.compstruct.2010.06.005
[13] Demir, Ç., Mercan, K., Civalek, Ö.: Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel. Compos. Part B Eng. 94, 1-10 (2016) · doi:10.1016/j.compositesb.2016.03.031
[14] Civalek, Ö.: Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos. Part B Eng. 50, 171-179 (2013) · doi:10.1016/j.compositesb.2013.01.027
[15] Thai, C.H., Ferreira, A.J.M., Wahab, M.A., Nguyen-Xuan, H.: A moving Kriging meshfree method with naturally stabilized nodal integration for analysis of functionally graded material sandwich plates. Acta Mech. 229, 2997-3023 (2018) · Zbl 1397.74202 · doi:10.1007/s00707-018-2156-9
[16] Kiani, Y.: Free vibration of carbon nanotube reinforced composite plate on point supports using Lagrangian multipliers. Meccanica 52(6), 1353-1367 (2017) · Zbl 1380.74047 · doi:10.1007/s11012-016-0466-3
[17] Tornabene, F., Viola, E., Inman, D.J.: 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures. J. Sound Vib. 328(3), 259-290 (2009) · doi:10.1016/j.jsv.2009.07.031
[18] Lal, R., Saini, R.: On the use of GDQ for vibration characteristic of non-homogeneous orthotropic rectangular plates of bilinearly varying thickness. Acta Mech. 226(5), 1605-1620 (2015) · Zbl 1329.74112 · doi:10.1007/s00707-014-1272-4
[19] Kumari, P., Behera, S.: Three-dimensional free vibration analysis of Levy-type laminated plates using multi-term extended Kantorovich method. Compos. Part B Eng. 116, 224-238 (2017) · doi:10.1016/j.compositesb.2017.01.057
[20] Cho, D.S., Kim, B.H., Kim, J.H., Vladimir, N., Choi, T.M.: Forced vibration analysis of arbitrarily constrained rectangular plates and stiffened panels using the assumed mode method. Thin Walled Struct. 90, 182-190 (2015) · doi:10.1016/j.tws.2015.01.020
[21] Chen, J.Y., Heyliger, P.R., Pan, E.: Free vibration of three-dimensional multilayered magneto-electro-elastic plates under combined clamped/free boundary conditions. J. Sound Vib. 333(17), 4017-4029 (2014) · doi:10.1016/j.jsv.2014.03.035
[22] Zenkour, A.M.: Buckling and free vibration of elastic plates using simple and mixed shear deformation theories. Acta Mech. 146(3-4), 183-197 (2001) · Zbl 0976.74025 · doi:10.1007/BF01246732
[23] Lezgy-Nazargah, M.: A high-performance parametrized mixed finite element model for bending and vibration analyses of thick plates. Acta Mech. 227(12), 3429-3450 (2016) · Zbl 1380.74075 · doi:10.1007/s00707-016-1676-4
[24] Yao, W., Zhong, W., Lim, C.W.: Symplectic Elasticity. World Scientific, Singapore (2009) · Zbl 1170.74002 · doi:10.1142/6656
[25] Lim, C.W., Lu, C.F., Xiang, Y., Yao, W.: On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. Int. J. Eng. Sci. 47(1), 131-140 (2009) · Zbl 1213.74203 · doi:10.1016/j.ijengsci.2008.08.003
[26] Lim, C.W.: Symplectic elasticity approach for free vibration of rectangular plates. Adv. Vib. Eng. 9(2), 159-163 (2010)
[27] Li, R., Tian, Y., Wang, P., Shi, Y., Wang, B.: New analytic free vibration solutions of rectangular thin plates resting on multiple point supports. Int. J. Mech. Sci. 110, 53-61 (2016) · doi:10.1016/j.ijmecsci.2016.03.002
[28] Li, R., Ni, X., Cheng, G.: Symplectic superposition method for benchmark flexure solutions for rectangular thick plates. J. Eng. Mech. 141(2), 04014119 (2015) · doi:10.1061/(ASCE)EM.1943-7889.0000840
[29] ABAQUS: Analysis User’s Guide V6.13. Dassault Systèmes, Pawtucket, RI (2013)
[30] Sakata, T., Takahashi, K., Bhat, R.: Natural frequencies of orthotropic rectangular plates obtained by iterative reduction of the partial differential equation. J. Sound Vib. 189(1), 89-101 (1996) · Zbl 1232.74064 · doi:10.1006/jsvi.1996.9999
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.