×

Spectral dynamics and regularization of incompletely and irregularly measured data. (English) Zbl 1264.94087

Summary: Constrained by practical and economical aspects, in many applications, one often deals with data sampled irregularly and incompletely. The use of irregularly sampled data may result in some artifacts and poor spatial resolution. Therefore, the preprocessing of the measurements onto a regular grid plays an important step. One of the methods achieving this objective is based on the Fourier reconstruction, which involves an underdetermined system of equations. The recent uniform uncertainty principle (UUP) uses convex optimization through \(l_1\) minimization for solving underdetermined systems. The \(l_1\) minimization admits certain theoretical guarantees and simpler implementation. The present work applies UUP to the Fourier-based data regularization problem. For the signals having sparse Fourier spectra, our method replaces the incomplete and irregular coordinate grid with the grid that is a subset of equispaced complete grid. It then generates error resulting from the stated replacement. Finally, it applies UUP to realize its objective. To justify the applicability of our method, we present the empirical performance of it on different sets of measurement coordinates as a function of number of nonzero Fourier coefficients.

MSC:

94A20 Sampling theory in information and communication theory
15B52 Random matrices (algebraic aspects)
42A05 Trigonometric polynomials, inequalities, extremal problems
90C25 Convex programming
90C90 Applications of mathematical programming
94A11 Application of orthogonal and other special functions

Software:

PDCO
Full Text: DOI

References:

[1] Aharon M., Elad M.: Sparse and redundant modeling of image content using an image content dictionary. SIAM J. Imaging Sci. 1(3), 228–247 (2008) · Zbl 1182.68337 · doi:10.1137/07070156X
[2] Bass R.F., Grochenig K.: Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal. 36(3), 773–795 (2004) · Zbl 1096.94008 · doi:10.1137/S0036141003432316
[3] Borwein, P., Erdelyi, T.: Polynomals and Polynomial Inequalities. Graduate Texts in Mathematics, vol. 161. Springer (1995)
[4] Bruckstein A.M., Donoho D.L., Elad M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009) · Zbl 1178.68619 · doi:10.1137/060657704
[5] Candes E.: The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sci. Paris 346(9–10), 589–592 (2008) · Zbl 1153.94002 · doi:10.1016/j.crma.2008.03.014
[6] Candes, E.J., Romberg, J.: Practical signal recovery from random projections. In: Wavelet Applications in Signal and Image Processing XI, Proc. of SPIE Conf., vol. 5914 (2004)
[7] Candes E.J., Tao T.: Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory 52, 5406–5425 (2006) · Zbl 1309.94033 · doi:10.1109/TIT.2006.885507
[8] Candes E.J., Romberg J., Tao T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006) · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[9] Candes E.J., Romberg J., Tao T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006) · Zbl 1098.94009 · doi:10.1002/cpa.20124
[10] Chen S.S., Donoho D.L., Saunders M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001) · Zbl 0979.94010 · doi:10.1137/S003614450037906X
[11] Daubechies I., Defrise M., De Mol C.: An iterative thresholding algorithm for linear inverse problem with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1541 (2004) · Zbl 1077.65055 · doi:10.1002/cpa.20042
[12] Donoho D.L., Elad M.: On the stability of the basis pursuit in the presence of noise. Signal Process. 86(3), 511–532 (2006) · Zbl 1163.94329 · doi:10.1016/j.sigpro.2005.05.027
[13] Donoho D.L., Elad M., Temlyakov V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52(1), 6–18 (2006) · Zbl 1288.94017 · doi:10.1109/TIT.2005.860430
[14] Elad M., Starck J., Querre P., Donoho D.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl. Comput. Harmon. Anal. 19, 340–358 (2005) · Zbl 1081.68732 · doi:10.1016/j.acha.2005.03.005
[15] Fuchs J.J.: On sparse representation in arbitrary redundant bases. IEEE Trans. Inform. Theory 50(6), 1341–1344 (2004) · Zbl 1284.94018 · doi:10.1109/TIT.2004.828141
[16] Hennenfent G., Herrmann F.J.: Seismic denoising with non-uniformly sampled curvelets. Comput. Sci. Eng 8(3), 50–59 (2006)
[17] Polo, Y.L., Wang, Y., Pandharipande, A., Leus, G.: Compressive wide-band spectrum sensing. In: IEEE-ICASSP, pp. 2337–2340 (2009)
[18] Rauhut H.: Random sampling of sparse trigonometric polynomials. Appl. Comput. Harmon. Anal. 22(1), 16–42 (2007) · Zbl 1123.94004 · doi:10.1016/j.acha.2006.05.002
[19] Rubinstein R., Zibulovsky M., Elad M.: Double sparsity: Learning sparse dictionary for sparse signal approximations. IEEE. Trans. Signal. Process 58(3), 1553–1554 (2010) · Zbl 1392.94427 · doi:10.1109/TSP.2009.2036477
[20] Tropp J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 51(3), 1030–1051 (2006) · Zbl 1288.94025 · doi:10.1109/TIT.2005.864420
[21] Zwartjes P.M., Sacchi M.D.: Fourier reconstruction of nonuniformly sampled, aliased seismic data. Geophysics 72(1), V21–V32 (2007) · doi:10.1190/1.2399442
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.