×

Hessian estimates in Orlicz spaces for fourth-order parabolic systems in non-smooth domains. (English) Zbl 1170.35027

The interesting paper under review establishes global Hessian estimates in Orlicz spaces for fourth-order parabolic systems of the form
\[ \begin{cases} \displaystyle {{\partial u^i}\over {\partial t}}+D_{\alpha\beta}(A_{ij}^{\alpha\beta ab}(x,t) D_{ab} u^j)= D_{\alpha\beta} f^i_{\alpha\beta} & \text{in}\;\Omega_T,\\ |u^i|+|Du^i|=0 & \text{on}\;\partial_P \Omega_T. \end{cases} \] Here \(\Omega_T\) is the cylinder \(\Omega\times(0,T)\) with a bounded base \(\Omega\subset \mathbb R^n\) the boundary of which is \((\delta,R)\)-Reifenberg flat and \(\partial_P\Omega_T\) stands for the parabolic boundary of \(\Omega_T.\) The tensor coefficients \(A_{ij}^{\alpha\beta ab}(x,t)\) are supposed to be bounded, uniformly elliptic and to have small weak BMO semi-norms while \(\mathbf{f}=\{f^i_{\alpha\beta}\}\) is a given tensor matrix with \(|\mathbf{f}|^2\in L^\varphi(\Omega_T)\) where \(\varphi\) is a Young function satisfying some moderate growth condition. The main result of the paper asserts that under the above conditions the unique weak solution \(u\) to the above system satisfies \(|D^2u|^2\in L^\varphi(\Omega_T)\) with the estimate
\[ \int_{\Omega_T} \varphi(|D^2u|^2)\,dx\,dt \leq C \int_{\Omega_T} \varphi(|\mathbf{f}|^2)\,dx\,dt. \]

MSC:

35B45 A priori estimates in context of PDEs
35R05 PDEs with low regular coefficients and/or low regular data
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35K50 Systems of parabolic equations, boundary value problems (MSC2000)
35K35 Initial-boundary value problems for higher-order parabolic equations
35D10 Regularity of generalized solutions of PDE (MSC2000)
Full Text: DOI

References:

[1] Acerbi, E.; Mingione, G., Gradient estimates for a class of parabolic systems, Duke Math. J., 136, 2, 285-320 (2007) · Zbl 1113.35105
[2] Adams, R., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0314.46030
[3] Byun, S., Parabolic equations with BMO coefficients in Lipschitz domains, J. Differential Equations, 209, 2, 229-265 (2005) · Zbl 1061.35021
[4] Byun, S.; Wang, L., Parabolic equations in time dependent Reifenberg domains, Adv. Math., 212, 2, 797-818 (2007) · Zbl 1117.35080
[5] Byun, S.; Wang, L., Gradient estimates for elliptic systems in nonsmooth domains, Math. Ann., 341, 3, 629-650 (2008) · Zbl 1143.35095
[6] Byun, S.; Wang, L., Fourth-order parabolic equations with weak BMO coefficients in Reifenberg domains, J. Differential Equations, 245, 11, 3217-3252 (2008) · Zbl 1160.35029
[7] Caffarelli, Luis A.; Peral, I., On \(W^{1, p}\) estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51, 1, 1-21 (1998) · Zbl 0906.35030
[8] Chill, R.; Fiorenza, A., Convergence and decay rate to equilibrium of bounded solutions of quasilinear parabolic equations, J. Differential Equations, 228, 2, 611-632 (2006) · Zbl 1115.35021
[9] David, G.; Toro, T., A generalization of Reifenberg’s theorem in \(R^3\), Geom. Funct. Anal., 18, 4, 1168-1235 (2008) · Zbl 1169.49040
[10] Elmahi, A.; Meskine, D., Parabolic equations in Orlicz spaces, J. London Math. Soc. (2), 72, 2, 410-428 (2005) · Zbl 1108.35082
[11] Evans, Lawrence C., Partial Differential Equations, Grad. Stud. Math., vol. 19 (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0902.35002
[12] Hong, G.; Wang, L., A geometric approach to the topological disk theorem of Reifenberg, Pacific J. Math., 233, 2, 321-339 (2007) · Zbl 1155.49037
[13] Idone, G., Boundary value problems for higher-order parabolic systems, Rend. Mat. (7), 4, 179-200 (1984) · Zbl 0592.35067
[14] Jia, H.; Li, D.; Wang, L., Regularity of Orlicz spaces for the Poisson equation, Manuscripta Math., 334, 3, 265-275 (2007) · Zbl 1152.35019
[15] Kim, D.; Krylov, N. V., Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others, SIAM J. Math. Anal., 39, 2, 489-506 (2007) · Zbl 1138.35308
[16] Kokilashvili, V.; Krbec, M., Miroslav Weighted Inequalities in Lorentz and Orlicz Spaces (1991), World Scientific: World Scientific River Edge, NJ · Zbl 0751.46021
[17] Krasnoselskii, M. A.; Rutickii, Ja. B., Convex Functions and Orlicz Space (1961), Noordhoff: Noordhoff Groningen, translated from the first Russian edition by Leo F. Boron · Zbl 0095.09103
[18] Krylov, N. V., Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms, J. Funct. Anal., 36, 2, 521-558 (2007) · Zbl 1133.35052
[19] Kuroda, T., Note on the uniqueness property of weak solutions of parabolic equations, Nagoya Math. J., 29, 45-49 (1967) · Zbl 0184.32401
[20] Lieberman, Gary M., Orlicz spaces, \(α\)-decreasing functions, and the \(\Delta_2\) condition, Colloq. Math., 101, 1, 113-120 (2004) · Zbl 1095.26003
[21] Mingione, G., The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6, 2, 195-261 (2007) · Zbl 1178.35168
[22] Orlicz, W., Über eine gewisse Klasse von Räumen vom Typus B, Bull. Int. Acad. Polon. Sci. A, 8/9, 207-220 (1932) · Zbl 0006.31503
[23] Rao, M. M.; Ren, Z. D., Theory of Orlicz Spaces, Pure Appl. Math. (N. Y.), vol. 146 (1991), Marcel Dekker: Marcel Dekker New York, 449 pp · Zbl 0724.46032
[24] Toro, T., Doubling and flatness: Geometry of measures, Notices Amer. Math. Soc., 1087-1094 (1997) · Zbl 0909.31006
[25] Reifenberg, E., Solutions of the plateau problem for \(m\)-dimensional surfaces of varying topological type, Acta Math., 1-92 (1960) · Zbl 0099.08503
[26] Yao, F.; Jia, H.; Wang, L.; Zhou, S., Regularity theory in Orlicz spaces for the Poisson and heat equations, Commun. Pure Appl. Anal., 7, 2, 407-416 (2008) · Zbl 1154.35018
[27] Yao, F.; Zhou, S., Linear second-order divergence equations in Lipschitz domains, J. Math. Anal. Appl., 344, 491-503 (2008) · Zbl 1186.35229
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.