×

Feedback equivalence of convolutional codes over finite rings. (English) Zbl 1417.94110

Summary: The approach to convolutional codes from the linear systems point of view provides us with effective tools in order to construct convolutional codes with adequate properties that let us use them in many applications. In this work, we have generalized feedback equivalence between families of convolutional codes and linear systems over certain rings, and we show that every locally Brunovsky linear system may be considered as a representation of a code under feedback convolutional equivalence.

MSC:

94B10 Convolutional codes
93C05 Linear systems in control theory
13M05 Structure of finite commutative rings
93B20 Minimal systems representations

References:

[1] Climent J.J., Herranz V., Perea C., Tomás V., Un criptosistema de clave pública basado en códigos convolucionales, In Proceedings of XXI Congreso de Ecuaciones Diferenciales y Aplicaciones & XI Congreso de Matemática aplicada (21-25 Septiembre, Ciudad Real, Spain), 2009, 1-8.; Climent, J. J.; Herranz, V.; Perea, C.; Tomás, V., In Proceedings of XXI Congreso de Ecuaciones Diferenciales y Aplicaciones & XI Congreso de Matemática aplicada (21-25 Septiembre, Ciudad Real, Spain), 1-8 (2009)
[2] Petsche, T., Dickinson B. W., A Trellis - structured Neural Network, Neural Infor. Proc. Systems, 1988, 592 - 601.; Petsche, T.; Dickinson, B. W., A Trellis - structured Neural Network, Neural Infor. Proc. Systems, 592-601 (1988)
[3] Forney Jr. G.D., Concatenated Codes, MIT Press, Cambridge, MA, 1966.; Forney, G. D., Concatenated Codes (1966)
[4] Rosenthal J., Codes, systems and graphical models, IMA, vol. 123, ch. Connections between linear systems and convolutional codes, Springer - Verlag, 2001, 39 - 66,; Rosenthal, J., ch. Connections between linear systems and convolutional codes, 39-66 (2001) · Zbl 0993.94559
[5] García-Planas M.I., Souidi El.M., Um L.E., Convolutional codes under linear systems point of view. Analysis of output-controllability. Wseas Transactions on Mathematics, 2012, 11 (4), 324-333.; García-Planas, M. I.; Souidi, El. M.; Um, L. E., Convolutional codes under linear systems point of view. Analysis of output-controllability, Wseas Transactions on Mathematics, 11, 4, 324-333 (2012)
[6] Climent J-J., Herranz V., Perea C., A first approximation of concatenated convolutional codes from linear systems theory viewpoint, Linear Algebra Appl., 2007, 425 ( 2-3), 673-699.; Climent, J-J.; Herranz, V.; Perea, C., A first approximation of concatenated convolutional codes from linear systems theory viewpoint, Linear Algebra Appl., 425, 2-3, 673-699 (2007) · Zbl 1140.94015
[7] Rosenthal J., Smarandache R., Maximum distance separable convolutional codes, Appl. Algebr. Eng. Comm., 1999, 10 (1), 15-32.; Rosenthal, J.; Smarandache, R., Maximum distance separable convolutional codes, Appl. Algebr. Eng. Comm., 10, 1, 15-32 (1999) · Zbl 0956.94016
[8] Zerz E., On multidimensional convolutional codes and controllability properties of multidimensional systems over finite rings, Asian J. Control, 2010, 12 (2), 119-126.; Zerz, E., On multidimensional convolutional codes and controllability properties of multidimensional systems over finite rings, Asian J. Control, 12, 2, 119-126 (2010) · Zbl 1106.93019
[9] Mahapakulchai S., Van Dyck R., Design of ring convolutional trellis codes for MAP decoding of MPEG-4 images, IEEE Trans.Commun., 2004, 52 (7), 1033 -1037.; Mahapakulchai, S.; Van Dyck, R., Design of ring convolutional trellis codes for MAP decoding of MPEG-4 images, IEEE Trans.Commun., 52, 7, 1033-1037 (2004)
[10] Jouhari H., Souidi E. M., Improving Embedding Capacity by using the Z4-linearity of Preparata Codes. Int J Comput Appl., 2012, 53 (18), 1-6.; Jouhari, H.; Souidi, E. M., Improving Embedding Capacity by using the Z4-linearity of Preparata Codes, Int J Comput Appl., 53, 18, 1-6 (2012)
[11] Massey J.L., Mittelholzer T., Convolutional codes over rings, In Proceedings Joint Swedish-Soviet Int. Workshop on Inform. Theory, (Gotland, Sweeden), 1989, 14-18.; Massey, J. L.; Mittelholzer, T., Convolutional codes over rings, In Proceedings Joint Swedish-Soviet Int. Workshop on Inform. Theory, (Gotland, Sweeden), 14-18 (1989)
[12] Massey J.L., Mittelholzer T., Systematicity and rotational invariance of convolutional codes over rings. In Proceedings Int. Workshop on Alg. and Combinatorial Coding Theory (Leningrad, Russia),1990, 154-158.; Massey, J. L.; Mittelholzer, T., Systematicity and rotational invariance of convolutional codes over rings, In Proceedings Int. Workshop on Alg. and Combinatorial Coding Theory (Leningrad, Russia), 154-158 (1990) · Zbl 0838.94004
[13] Fagnani, F., Zampieri S., System-theoretic properties of convolutional codes over rings, IEEE T. Infor. Theory, 2001, 47 (6), 2256-2274.; Fagnani, F.; Zampieri, S., System-theoretic properties of convolutional codes over rings, IEEE T. Infor. Theory, 47, 6, 2256-2274 (2001) · Zbl 1028.94033
[14] Johannesson R., Wan Z., Wittenmark E., Some structural properties of convolutional codes over rings, IEEE T. Infor. Theory, 1998, 44 (2), 839-845.; Johannesson, R.; Wan, Z.; Wittenmark, E., Some structural properties of convolutional codes over rings, IEEE T. Infor. Theory, 44, 2, 839-845 (1998) · Zbl 0923.94032
[15] Kuijper M., Pinto R., On minimality of convolutional ring encoders, IEEE T. Inform. Theory, 2009, 55 (11), 4890-4897.; Kuijper, M.; Pinto, R., On minimality of convolutional ring encoders, IEEE T. Inform. Theory, 55, 11, 4890-4897 (2009) · Zbl 1367.94382
[16] El Oued M., Napp D., Pinto R., Toste M., The dual of convolutional codes over \(Z_{p^r}\). volume entitled Applied and Computational Matrix Analysis. Springer Verlag, 2017, 192, 79-91.; El Oued, M.; Napp, D.; Pinto, R.; Toste, M., volume entitled Applied and Computational Matrix Analysis, 192, 79-91 (2017) · Zbl 1440.94108
[17] El Oued M., Sole P., MDS convolutional codes over a finite ring. IEEE T. Inform. Theory.,2013, 59 (11), 7305 -7313.; El Oued, M.; Sole, P., MDS convolutional codes over a finite ring, IEEE T. Inform. Theory., 59, 11, 7305-7313 (2013) · Zbl 1364.94643
[18] Napp D., Pinto R., Toste M., On MDS convolutional codes over \(Z_{p^r}\), Des. Codes Cryptogr., 2017, 83, 101-114.; Napp, D.; Pinto, R.; Toste, M., On MDS convolutional codes over \(Z_{p^r}\), Des. Codes Cryptogr., 83, 101-114 (2017) · Zbl 1379.94060
[19] Carriegos M., DeCastro-García N., Muñoz Castañeda A., Kernel representations of convolutional codes over rings, Preprint available in , unpublished data.; Carriegos, M.; DeCastro-García, N.; Muñoz Castañeda, A., Kernel representations of convolutional codes over rings · Zbl 1338.13019
[20] DeCastro-García N., Feedback equivalence in linear systems and convolutional codes. Applications to Cybernetics, Coding and Cryptography, Ph. D. DThesis, Universidad de León, Spain, 2016.; DeCastro-García, N., Applications to Cybernetics, Coding and Cryptography (2016)
[21] Rosenthal J., Schumacher, J. M., York E. V., On behaviors and convolutional codes, IEEE T. Inform. Theory, 1996, 42 (6), 1881-1891.; Rosenthal, J.; Schumacher, J. M.; York, E. V., On behaviors and convolutional codes, IEEE T. Inform. Theory, 42, 6, 1881-1891 (1996) · Zbl 0876.94042
[22] Rosenthal J., York E. V., BCH Convolutional Codes, IEEE T. Inform. Theory, 1999, 45 (6), 1833-1844,; Rosenthal, J.; York, E. V., BCH Convolutional Codes, IEEE T. Inform. Theory, 45, 6, 1833-1844 (1999) · Zbl 0958.94035
[23] York E. V., Algebraic description and construction of error correcting codes, a systems theory point of view, Ph.D. thesis, Univ. Notre Dame, France, 1997.; York, E. V., Ph.D. thesis (1997) · Zbl 0968.94011
[24] Brewer J. W., Klingler L., On feedback invariants for linear dynamical systems, Linear Algebra Appl., 2001, 325 (1-3), 209-220.; Brewer, J. W.; Klingler, L., On feedback invariants for linear dynamical systems, Linear Algebra Appl., 325, 1-3, 209-220 (2001) · Zbl 0983.93008
[25] Brewer J. W., Bunce J. W., Van Vleck F. S., Linear Systems over Commutative Rings, Marcel Dekker, New York, 1986.; Brewer, J. W.; Bunce, J. W.; Van Vleck, F. S., Linear Systems over Commutative Rings (1986) · Zbl 0607.13001
[26] Hautus M.L.J., Sontag E.D., New results on pole-shifting for parametrized families of systems, J. Pure Appl. Algeb, 1986, 40, 229-244.; Hautus, M. L.J.; Sontag, E. D., New results on pole-shifting for parametrized families of systems, J. Pure Appl. Algeb, 40, 229-244 (1986) · Zbl 0665.93018
[27] MacWilliams F. J., A theorem on the distribution of weights in a systematic code. Bell Syst. Tech. J., 1963, 42, 79-94.; MacWilliams, F. J., A theorem on the distribution of weights in a systematic code, Bell Syst. Tech. J., 42, 79-94 (1963)
[28] Gluesing-Luerssen H., Schneider G., State space realizations and monomial equivalence for convolutional codes, Linear Algebra Appl., 2007, 425 (2-3), 518-533.; Gluesing-Luerssen, H.; Schneider, G., State space realizations and monomial equivalence for convolutional codes, Linear Algebra Appl., 425, 2-3, 518-533 (2007) · Zbl 1140.94016
[29] Quang Dinh H., Łódź-Permouth S. R., On the equivalence of codes over rings and modules, Finite Fields Th. App., 2004, 10, 615-625.; Quang Dinh, H.; Łódź-Permouth, S. R., On the equivalence of codes over rings and modules, Finite Fields Th. App., 10, 615-625 (2004) · Zbl 1082.94020
[30] Carriegos M., Hermida-Alonso J.A., Sánchez-Giralda T., The pointwise feedback relation for linear dynamical systems, Linear Algebra Appl., 1998, 279 (1-3), 119-134.; Carriegos, M.; Hermida-Alonso, J. A.; Sánchez-Giralda, T., The pointwise feedback relation for linear dynamical systems, Linear Algebra Appl., 279, 1-3, 119-134 (1998) · Zbl 0932.93018
[31] Hermida-Alonso J.A., Perez M.P., Sanchez-Giralda T., Brunovsky’s canonical form for linear dynamical Systems over commutative rings, Linear Algebra Appl., 1996, 233, 131-147.; Hermida-Alonso, J. A.; Perez, M. P.; Sanchez-Giralda, T., Brunovsky’s canonical form for linear dynamical Systems over commutative rings, Linear Algebra Appl., 233, 131-147 (1996) · Zbl 0843.93012
[32] Carriegos M. V., Enumeration of classes of linear systems via equations and via partitions in a ordered abelian monoid, Linear Algebra App., 2013, 438 (3), 1132-1148.; Carriegos, M. V., Enumeration of classes of linear systems via equations and via partitions in a ordered abelian monoid, Linear Algebra App., 438, 3, 1132-1148 (2013) · Zbl 1256.93036
[33] Hautus M.L.J., Controllability and observability condition for linear autonomous system. Ned. Akad. Wetenschappen, Proc. Ser. A, 1969, 72, 443-448.; Hautus, M. L.J., Controllability and observability condition for linear autonomous system, Ned. Akad. Wetenschappen, Proc. Ser. A, 72, 443-448 (1969) · Zbl 0188.46801
[34] Brunovsky P. A., A classification of linear controllable systems, Kibernetika, 1970, 6 (3), 173-187.; Brunovsky, P. A., A classification of linear controllable systems, Kibernetika, 6, 3, 173-187 (1970) · Zbl 0199.48202
[35] Kalman R. E., Kronecker invariants and Feedback, in Ordinary Differential Equations, Academic Press (New York), 1972, 459-471.; Kalman, R. E., Kronecker invariants and Feedback, in Ordinary Differential Equations, 459-471 (1972) · Zbl 0308.93008
[36] DeCastro-García N., Carriegos M.V., Muñoz Castañeda A., A characterization of von Neumann rings in terms of linear systems, Linear Algebra App., 2016, 494, 236-244.; DeCastro-García, N.; Carriegos, M. V.; Muñoz Castañeda, A., A characterization of von Neumann rings in terms of linear systems, Linear Algebra App., 494, 236-244 (2016) · Zbl 1338.13019
[37] McEliece R. J., The algebraic theory of convolutional codes. In V. Pless and W.C. Huffman, editors, Handbook of Coding Theory, 1998, 1, 1065-1138.; McEliece, R. J.; Pless, V.; Huffman, W. C., Handbook of Coding Theory, 1, 1065-1138 (1998) · Zbl 0967.94020
[38] Massey J.L., Sain M.K., Codes, automata and continuous systems: explicit interconnections, IEEE Trans. Automat. Contr., 1967, 12 (6), 644-650.; Massey, J. L.; Sain, M. K., Codes, automata and continuous systems: explicit interconnections, IEEE Trans. Automat. Contr., 12, 6, 644-650 (1967)
[39] Kitchens B. Symbolic Dynamics and Convolutional Codes. In: Marcus B., Rosenthal J. (eds) Codes, Systems, and Graphical Models. The IMA Volumes in Mathematics and its Applications, Springer, New York, NY, 2001, 123.; Kitchens, B.; Marcus, B.; Rosenthal, J., Codes, Systems, and Graphical Models. The IMA Volumes in Mathematics and its Applications, 123 (2001) · Zbl 0993.94558
[40] Willems J. C., From time series to linear system-part I. Finite dimensional linear time invariant systems, Automatica (Journal of IFAC), 1986, 22 (5), 561-580.; Willems, J. C., From time series to linear system-part I, Finite dimensional linear time invariant systems, Automatica (Journal of IFAC), 22, 5, 561-580 (1986) · Zbl 0604.62090
[41] Kuijper M., First Order Representations of Linear Systems, Ph.D. Thesis, Boston, MA: Birkhäuser, 1994; Kuijper, M., Ph.D. Thesis (1994) · Zbl 0863.93001
[42] Kuijper M., Schumacher J. M., Realization of Autoregressive Equations in Pencil and Descriptor Form, SIAM J. Control Optim., 1990, 28 (5), 1162-1189.; Kuijper, M.; Schumacher, J. M., Realization of Autoregressive Equations in Pencil and Descriptor Form, SIAM J. Control Optim., 28, 5, 1162-1189 (1990) · Zbl 0721.93016
[43] Fornasini, Valcher M.E., Multidimensional systems with finite support behaviors, Signal structure generation and detection, SIAM J. Control Op., 1998, 36(2), 760 779.; Fornasini; Valcher, M. E., Multidimensional systems with finite support behaviors, Signal structure generation and detection, SIAM J. Control Op., 36, 2, 760-779 (1998) · Zbl 0913.93033
[44] Popov V. M., Invariant description of linear time-invariant controllable systems, SIAM J. Control Opl, 1972, 10 (2), 252-264.; Popov, V. M., Invariant description of linear time-invariant controllable systems, SIAM J. Control Opl, 10, 2, 252-264 (1972) · Zbl 0251.93013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.